首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The macroscopic volume shrinkage and swelling of poly(N-isopropylacryl-amide) (PNIPA) gel induced by the compositional change in the methanol–water mixed solvent is correlated to the change in the nanoscopic free volume size and numerical concentration formed in the PNIPA gels. The free volume size and numerical concentration are estimated from the longest component appearing in the positron annihilation lifetime curves. The apparent free volume fraction calculated by the free volume size and numerical concentration, and dispersion of the free volume deduced by the size distribution are utilized to analyze the origin and location of the free volumes. The free volume parameters obtained by analysis of the positron annihilation data show various nanoscopic phases occuring within the PNIPA gels during the volume change, implying the variation of the strength of the interactions among the solvent molecules and the polymer chains of the PNIPA. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1141–1151, 1998  相似文献   

2.
Free‐volume properties, size and distribution, in amorphous polystyrene exposed to CO2 gases have been measured as a function of pressure to 800 psi (5.5 MPa), of time, and of temperature using positron annihilation lifetime spectroscopy. The free volume increases significantly and its distribution broadens as a function of pressure. The free volume relaxes as a function of time with a characteristic time of 15 h, and 5.7 h for 400, and 800 psi, respectively, after depressurizing under vacuum. A portion of free volume created by CO2 exposure remains permanently in the polymer after CO2 exposure. The glass transition temperature decreases significantly as a function of CO2 pressure from the free‐volume data and is compared with the differential scanning calorimeter results. The observed free‐volume variations as a function of pressure, time, and temperature are discussed in terms of hole expansion, creation, free‐volume relaxation, plasticization, and hole filling in amorphous polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 388–405, 2008  相似文献   

3.
The free‐volumes of solid polymer electrolytes (SPE) were characterized using positron annihilation lifetime (PAL) spectroscopy, FTIR, and scanning electron microscope (SEM) techniques. The SPE based on poly(vinyl alcohol) (PVA) and sodium bromide (NaBr) complexed with sulfuric acid (SA) H2SO4 at different weight percent ratios were prepared using solution cast technique. The PAL results indicate that a higher SA content (more than 0.87 mol/L) in (PVA)0.7(NaBr)0.3 matrix increase the free‐volume hole size from 58 Å3 to 87 Å3. The increase in the SPE free‐volume with higher SA content was associated with a decrease in the SPE crystallinity. It is postulated that the incorporated SA interrupt polymeric chain packing and retard crystallization during electrolyte films formation. The FTIR spectral studies indicate that the SA content higher than 0.87 mol/L induces chemical modifications within the PVA, which results in chain scission. The PAL study shows that the chain scissions within the polymer matrix affect the free volume hole density (I3) and hence the microstructure. I3 was found to be decreased from ?11 to ?6 %, resulting in lower fractional free‐volume holes in the SPE films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2038–2044, 2010  相似文献   

4.
Changes in the free‐volume parameters of polyacrylamide (PAAm) gels during the volume phase transition (VPT) were studied with the positron annihilation lifetime technique. The VPT was induced through the variation of the solvent composition in a mixture of acetone and water. The PAAm gels containing 0 and 4 mol % carboxyl groups in their polymer chains were adapted to compare the effect of the presence of ionic groups on the microscopic environment. The change of the free‐volume property is discussed on a nanoscopic scale, with attention paid to the interactions between the polymer chains and the solvent molecules. It is proven that the variations of the free‐volume parameters correlate significantly with the VPT phenomenon. The results of the free volume for both gels are well‐explained when an interaction parameter, εg, is assumed. The interpretation suggests that the state of the interactions among the components (the polymer chain, acetone, and water molecules) plays an important role in the change of the free volume of PAAm gels during the VPT. An increase of the dispersion of the free‐volume size near the VPT point was observed for the ionized PAAm gel. The broadened size distribution of the free volume of the ionized PAAm gel around the VPT point lay between those of pure water and the corresponding mixed solvent, suggesting that a local minimum of the average free‐volume size at the VPT point is caused by the increase of a specific interaction, hydrogen bonding. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 922–933, 2000  相似文献   

5.
The temperature dependence of the mean size of nanoscale free‐volume holes, 〈Vh〉, in polymer blend system consisting of polar and nonpolar polymers has been investigated. The positron lifetime spectra were measured for a series of polymer blends between polyethylene (PE) and nitrile butadiene rubber (NBR) as a function of temperature from 100 to 300 K. The glass transition temperatures (Tg) for blends were determined from the ortho‐positronium (o‐Ps) lifetime τ3 and the mean size of free‐volume holes 〈Vh〉 versus temperature as a function of wt % of NBR. The Tgs estimated from the PALS data agree very well with those estimated from DSC in view of different time scales involved in the two measurements. Both DSC and PALS results for the blends showed two clear Tgs of a two‐phase system. Furthermore, from the variation of thermal expansivity of the nanoscale free‐volume holes, the thermal expansion coefficients of glass and amorphous phases were estimated. Variations of the o‐Ps formation probability I3 versus temperature for pure PE and blends with low wt % of NBR were interpreted on the basis of the spur reaction model of Ps formation with reference to the effects of localized electrons and trapping centers produced by positron irradiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 227–238, 2009  相似文献   

6.
Methyl methacrylate (MMA) was polymerized in bulk at 70 °C in the presence of an alkoxyamine initiator with low dissociation temperature (the so‐called BlocBuilder?) and increasing amounts of free Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide (SG1). Low final monomer conversions were reached, indicating a loss in radical activity due to side reactions such as irreversible homoterminations between the propagating radicals and β‐hydrogen transfer (also called disproportionation) from a propagating radical to a free‐SG1 nitroxide. Proton NMR and MALDI‐TOF mass spectrometry were used to analyze the polymer chain‐ends and to clearly identify the main mechanism of irreversible termination. In particular, it was shown that all polymer chains were terminated by an alkene function in the presence of a large excess of free SG1, meaning that β‐hydrogen transfer from PMMA propagating radicals to the nitroxide SG1 was the major chain‐stopping event. On the other hand, for a low excess of free SG1, the two termination modes coexisted. Kinetic modeling was then performed using the PREDICI software, and the rate constant of β‐hydrogen transfer, kβHtr, was estimated to be 1.69 × 103 L mol?1 s?1 at 70 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6333–6345, 2008  相似文献   

7.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

8.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

9.
A soluble all‐aromatic poly(2,5‐diphenyl‐1,4‐phenylenevinylene) (2,5‐DP‐PPV) is synthesized by utilizing aromatic phosphonium and aldehyde monomers through Wittig reaction. The H1 NMR and FTIR measurements indicate that over 50% content of cis‐vinylene units exist in polymer backbone. The diphenyl‐substituted benzaldehyde monomer plays an important role to enhance cis‐products (Z‐selectivity) in Wittig reactions. The twisted cis‐segments in polymer backbone reduce the interchain interactions and enhance the solubility of such all‐aromatic PPV derivative in common organic solvents. 2,5‐DP‐PPV exhibits good solubility in common organic solvents, such as tetrahydrofuran and chloroform. The polymer film exhibits a blue light emission (λmax = 485 nm) and a very high photoluminescence efficiency of 78%. The cis‐trans photo isomerization of this polymer in solution and the impact on the optical properties are also investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5242–5250, 2008  相似文献   

10.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used to produce poly(methyl acrylate) (pMA) loops grafted onto silica nanoparticles using doubly anchored bifunctional RAFT agents 1,4‐bis(3′‐trimethoxysilylpropyltrithiocarbonylmethyl)benzene (Z‐group approach) and 1,6‐bis(o,p‐2′‐trimethoxysilylethylbenzyltrithiocarbonyl)hexane (R‐group approach) as mediators. In both cases, molecular weights of the resulting surface‐confined polymer loops increased with monomer conversion, whereas the grafting density was significantly higher in the case of the R‐group supported RAFT polymerization due to mechanistic differences of the RAFT process at the surface. This result was evident from thermogravimetric analysis and supported by scanning electron microscopy. Polymer loops with molecular weights up to 53,000 g mol?1 were accessible with polydispersities of about 2.0 without and 1.5 with the addition of free RAFT agent. UV signals of the detached pMA loops measured via size exclusion chromatography were shifted to higher molecular weights compared with the corresponding RI signals, indicating branching reactions caused by the close proximity of growing radicals and polymer at the surface of the silica nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7656–7666, 2008  相似文献   

11.
The effect of the medium composition (monomer and solvent) on the kinetics of dispersion polymerization of methyl methacrylate (MMA) was studied via reaction calorimetry. It was found that increasing the monomer concentration increased the reaction rate; the exponent of the dependency of the initial reaction rate on the MMA concentration was found to be 0.93. Narrow particle size distributions were achieved at the lower monomer concentrations (0.24–0.81 mol/L) and a minimum size (2.45 μm) was found at an intermediate concentration (0.44 mol/L). The average molecular weight of the PMMA increased and the molecular weight distribution broadened with increasing monomer concentration. During a dispersion polymerization, the MMA concentration was found to decrease linearly with conversion in both phases, whereas the ratio of concentrations in the particles and continuous phase ([M]p/[M]c) remained constant (0.47) with partitioning favoring the continuous phase. The average number of free radicals per particle in MMA dispersion polymerization was estimated to be high from the nucleation stage onward (>5000). The increasing rate during the first ~ 40% conversion was primarily caused by the increasing volume of the polymer particle phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3638–3647, 2008  相似文献   

12.
Three Cobalt(III) phthalocyanine (Phthalcon) powders with different particle sizes and chemical compositions, but almost equal XRD spectra and powder conductivity were synthesized and used as conductive fillers in crosslinked epoxy matrices. Two of these Phthalcons are new compounds. The relation between the conductivity of the composites and the type and amount of filler used was determined. The influence of particle size and chemical composition on this relation appeared to be minimal. These composites had a percolation threshold of 0.9 vol % and a maximum volume conductivity of 10?7 S/cm. Detailed analysis showed that the particle networks have very similar fractal structures and that they are likely to be formed by diffusion limited cluster‐cluster aggregation during processing. Evidence is presented that these particle networks are formed at an early stage of crosslinking and that the charge transfer between particles in the networks is neither limited by the Phthalcon particle size, nor by the presence of polymer matrix between the particles. The maximum volume conductivity of these composites is likely to be limited by the amount of filler used, the crystal structure defects on the particle surface, and the fractality and the imperfection of the particle networks. The impact of these findings on the conductivity of other polymer nanocomposites is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1079–1093, 2008  相似文献   

13.
Poly(1-trimethylsilyl-1-propyne) (PTMSP), a high free-volume glassy di-substituted polyacetylene, has the highest gas permeabilities of all known polymers. The high gas permeabilities in PTMSP result from its very high excess free volume and connectivity of free volume elements. Permeability coefficients of permanent gases in PTMSP decrease dramatically over time due to loss of excess free volume. The effects of aging on gas permeability and selectivity of PTMSP membranes continuously exposed to a 2 mol % n-butane/98 mol % hydrogen mixture over a period of 47 days are reported. The permeation properties of PTMSP membranes are quite stable when the polymer is continuously exposed to a gas mixture containing a highly sorbing organic vapor such af n-butane. The n-butane/hydrogen selectivity was essentially constant for the 47-day test period at a value of 29, or 88% of the initial value of the as-cast film of 33. Condensable gases such as n-butane may serve as a “filler” in the nonequilibrium free volume of the polymer, thereby preserving the high level of excess free volume. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1483–1490, 1997  相似文献   

14.
We have designed and synthesized a new polymer, which could be used in the organic thin film transistor (OTFT). Poly[2,6‐bis(3′‐dodecythiophene‐2′‐yl)anthracene] (PDTAn), which is composed with anthracene moiety and dodecyl alkyl thiophene, was synthesized by oxidative polymerization using iron (III) chloride. The mole ratio of FeCl3 and monomer (4.2:1), keeping low temperature during the initiation reaction, amount of solvent, and dropping order were very important for oxidative polymerization without crosslinking. The molecular weight of the polymer (Mw) was measured to be 40,000 with 2.85 of polydispersity index by GPC. The physical and optical properties of the polymer were characterized by differential scanning calorimetry (DSC), cyclic voltammetry (CV), and optical absorption and photoluminescence (PL) spectroscopy. A field‐effect mobility of 1.1 × 10?4 cm2 V?1 S?1, a current on/off ratio of 105, and the Vth at ?15.2 V had been obtained for OTFTs using this polymer semiconductor by solution coating. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5115–5122, 2008  相似文献   

15.
This article demonstrates that transport of gases through glassy polymers is significantly influenced not only by the absolute amount but also by the distribution of free volume. Two stereoisomers of polynorbornene with nearly equivalent total free volume, but markedly different average free‐volume sizes, were evaluated. The free‐volume element size was probed with positron annihilation lifetime spectroscopy, wide‐angle X‐ray scattering, gas sorption, and molecular modeling. The permeation, sorption, and diffusion of light gases were measured in each stereoisomer at 35 °C. All analytical techniques indicated that one isomer (labeled as Architecture II) had a larger average free‐volume element size but fewer elements. This isomer also had a very slightly higher bulk density (1.000 vs 0.992 g/cm3 for the other stereoisomer). Architecture II also had gas sorption and diffusion coefficients that were two to three times those of the less dense counterpart. These differences have been attributed to differences in the free‐volume element size available within the polymer matrix. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2185–2199, 2003  相似文献   

16.
Free volume properties of a series of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) membranes, which were produced by various nonisothermal crystallization processes (rapid‐, step‐, and slow‐cooling processes), were investigated using positron annihilation lifetime (PAL) spectroscopy over a temperature range of 25–90 °C. From the annihilation lifetime parameters, the temperature dependence of free volume size, amount, size distribution, and fractional free volume and thermal expansion properties of free volume were discussed. A model which assumed that amorphous phase was subdivided into mobile and rigid amorphous fractions (MAF and RAF) in the semicrystalline polymer was considered to interpret the temperature dependence of those free volume properties. Morphological observation of the semicrystalline polymer by small‐angle X‐ray scattering (SAXS) indicated that the rapid‐cooled (cold‐crystallized) membranes showed a much thinner thickness of the repeating lamellar/amorphous layers and most likely higher amount of RAF, which restrained the chain motion, than the step‐ and slow‐cooled (melt‐crystallized) membranes. The difference of free volume properties among various PHBV membranes was created according to the crystalline structure of the polymer from different thermal history. The polymer crystallized with slower cooling rate induced higher crystallinity and resulted in less free volume amount and lower fractional free volume. In addition, the thermal expansion coefficients of free volume size were affected by the crystallization rate of PHBV polymer. Larger distribution of the free volume size of melt‐crystallized membranes was observed as a result of the bimodal distribution of the lamellar periodicity and less amount of RAF than that of the cold‐crystallized membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 855–865, 2009  相似文献   

17.
The microstructure of the free volume was studied for an amorphous perfluorinated polymer (Tg = 378 K). To this aim we employed pressure–volume–temperature experiments (PVT) and positron annihilation lifetime spectroscopy (PALS). Using the Simha‐Somcynsky equation of state the hole free volume fraction h and the specific free and occupied volumes, Vf = hV and Vocc = (1 ? h)V, were determined. Their expansivities and compressibilities were calculated from fits of the Tait equation to the volume data. It was found that in the glass Vocc has a particular high compressibility, while the compressibility of Vf is rather low, although h (300 K) = 0.108 is large. In the rubbery state the free volume dominates the total compressibility. From the PALS spectra the hole size distribution, its mean, 〈vh〉, and mean dispersion, σh, were calculated. From a comparison of 〈vh〉 with Vf a constant hole density of Nh′ = 0.25 × 1021 g?1 was estimated. The volume of the smallest representative freely fluctuating subsystem, 〈VSV〉 ∝ 1/σh2, is unusually small. This was explained by an inherent topologic disorder of this polymer. 〈vh〉 and σh show an exponential‐like decrease with increasing pressure P at 298 K. The hole density, calculated from Nh′ = Vf/〈vh〉, seems to show an increase with P which is unexpected. This was explained by the compression of holes in the glass in two, rather than three, dimensions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2519–2534, 2007  相似文献   

18.
A simple mathematic model for the free radical polymerization of chain transfer monomers containing both polymerizable vinyl groups and telogen groups was proposed. The molecular architecture of the obtained polymer can be prognosticated according to the developed model, which was validated experimentally by homopolymerization of 4‐vinyl benzyl thiol (VBT) and its copolymerization with styrene. The chain transfer constant (CT) of telogen group in a chain transfer monomer is considered to play an important role to determine the architecture of obtained polymer according to the proposed model, either in homopolymerization or copolymerization. A highly branched polymer will be formed when the CT value is around unity, while a linear polymer with a certain extent of side chains will be obtained when the CT value is much bigger or smaller than unity. The CT of VBT was determined to be around 15 by using the developed model and 1H NMR monitored experiments. The obtained poly(VBT) and its copolymers were substantiated to be mainly consisted of linear main chain with side branching chains, which is in agreement with the anticipation from the developed model. The glass transition temperature, number average molecular weight, and its distribution of those obtained polymer were primarily investigated. This model is hopefully to be used as a strategy to select appropriate chain transfer monomers for preparing hyperbranched polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1449–1459, 2008  相似文献   

19.
A 100% hyperbranched polymer was successfully prepared by using 2‐[4‐(4‐mercaptobutoxy)phenoxy]‐9H‐fluoren‐9‐one as an AB2 monomer in trifluoroacetic acid. The kinetics of the model reaction between 9‐fluorenone and 3‐mercaptopropionic acid was investigated. The reaction obeyed the second‐order kinetics, indicating that the first reaction, that is, the formation of the intermediate from 9‐fluorenone and 3‐mercaptopropionic acid, is considerably slower than the second one, that is, the reaction of the intermediate with 3‐mercaptopropionic acid. On the basis of this finding, a new monomer expected to produce a 100% branched hyperbranched polymer, 2‐[4‐(4‐mercaptobutoxy)phenoxy]‐9H‐fluoren‐9‐one, was designed and prepared. The obtained polymer was characterized by 1H and 13C‐NMR spectroscopy, which confirmed that the polymer was a 100% branched hyperbranched polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2689–2700, 2008  相似文献   

20.
A novel combination of dispersed phase polymer nanocomposite electrolyte based on PEO8‐LiClO4+ x wt % nano‐CeO2 has been investigated. A model for ion transport mechanism has been proposed to account for substantial enhancement of its electrical conductivity by ~ 2 orders of magnitude at low volume fraction of the filler reinforcement in the polymer nanocomposite films. The strength of the proposed model is based on unambiguous evidences from FTIR, TEM, and conductivity analysis. The FTIR results provide clear role of nanofiller concentration on ion–ion interaction quantified in terms of the fraction of free anion and ion‐pairs present in the nanocomposite films and its excellent correlation with conductivity versus filler concentration. The presence of asymmetry in the ν4(ClO4?) band observed at 625 cm?1 is attributed to its resolved degeneracy suggesting the presence of both uncoordinated and cation‐coordinated ClO4? anion in the matrix due to ion–ion and ion–filler interactions assisted by Lewis acid–base interaction. The enhancement in conductivity at low concentration is possibly due to direct interaction of nano‐CeO2 with both polymer host and anions resulting in the release of ionic charges. Drastic conductivity reduction at higher concentration is related to charge immobilization because of ion/ion‐pair entrapment by local clusters of filler as evidenced in TEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 60–71, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号