首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well‐defined ω‐cholesteryl poly(n‐hexyl isocyanate) (PHIC–Chol), as well as diblock copolymers of n‐hexyl isocyanate (HIC) with styrene, PS‐b‐PHIC [PS = polystyrene; PHIC = poly(n‐hexyl isocyanate)], and triblock terpolymers with styrene and isoprene, PS‐b‐PI‐b‐PHIC and PI‐b‐PS‐b‐PHIC (PI = polyisoprene), were synthesized with CpTiCl2(OR) (R = cholesteryl group, PS, or PS‐b‐PI) complexes. The synthetic strategy involved the reaction of the precursor complex CpTiCl3 with cholesterol or the suitable ω‐hydroxy homopolymer or block copolymer, followed by the polymerization of HIC. The ω‐hydroxy polymers were prepared by the anionic polymerization of the corresponding monomers and the reaction of the living chains with ethylene oxide. The reaction sequence was monitored by size exclusion chromatography, and the final products were characterized by size exclusion chromatography (light scattering and refractive‐index detectors), nuclear magnetic resonance spectroscopy, and, in the case of PHIC–Chol, differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6503–6514, 2005  相似文献   

2.
The dendrimer‐like copolymers [PEEGE‐(PS/PEO)]n (n ≥ 2) based on the star[Polystyrene‐Poly(ethylene oxide)‐Poly(ethoxyethyl glycidyl ether)] [star(PS‐PEO‐(PEEGE‐OH))] terpolymers were synthesized by click chemistry. First, the star‐shaped copolymers star[PS‐PEO‐(PEEGE‐Alkyne)] (also termed as [PEEGE‐(PS/PEO)]1) were synthesized by the reaction of hydroxyl end group at PEEGE arm (on star[PS‐PEO‐(PEEGE‐OH)]) with propargyl bromide. Then, the small molecule 1,4‐diazidobutane (DAB) with two azide groups and pentaerythritol tetrakis (2‐azidoisobutyrate) (PTAB) with four azide groups were synthesized and reacted with [PEEGE‐(PS/PEO)]1 by the click chemistry for dendrimer‐like [PEEGE‐(PS/PEO)]2 and [PEEGE‐(PS/PEO)]4, respectively. However, in the latter case, only the [PEEGE‐(PS/PEO)]3 was formed as the main product because of the steric effect. The final dendrimer‐like [PEEGE‐(PS/PEO)]n copolymers were characterized by SEC and 1H‐NMR in detail. Comparing with the SEC of their precursor [PEEGE‐(PS/PEO)]1, the curves of [PEEGE‐(PS/PEO)]2 was shifted to the shorter elution time, while that of [PEEGE‐(PS/PEO)]n (n ≥ 3) was shifted to the longer elution time, which was attributed to the different hydrodynamic volume derived from their separate structures and compositions in THF solution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4800–4810, 2009  相似文献   

3.
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSnb‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSnb‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3b‐PVAc and PVAc2b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

5.
Two types of multiarm star block copolymers: (polystyrene)m‐poly(divinylbenzene)‐poly(methyl methacrylate)n, (PS)m‐polyDVB‐(PMMA)n and (polystyrene)m‐poly(divinylbenzene)‐poly(tert‐butyl acrylate)k, (PS)m‐polyDVB‐(PtBA)k were successfully prepared via a combination of cross‐linking and Diels–Alder click reactions based on “arm‐first” methodology. For this purpose, multiarm star polymer with anthracene functionality as reactive periphery groups was prepared by a cross‐linking reaction of divinyl benzene using α‐anthracene end functionalized polystyrene (PS‐Anth) as a macroinitiator. Thus, obtained multiarm star polymer was then reacted with furan protected maleimide‐end functionalized polymers: PMMA‐MI or PtBA‐MI at reflux temperature of toluene for 48 h resulting in the corresponding multiarm star block copolymers via Diels–Alder click reaction. The multiarm star and multiarm star block copolymers were characterized by using 1H NMR, SEC, Viscotek triple detection SEC (TD‐SEC) and UV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 178–187, 2009  相似文献   

6.
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Well‐defined hetero eight‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution were successfully synthesized by the combination of ring‐opening polymerization, ATRP, and “click” reaction. The synthetic procedure involves three steps: (1) preparation of a tetrafunctional PS and PCL star copolymer with two PS and two PCL arms using the tetrafunctional initiator bearing two hydroxyl groups and two bromo groups; (2) synthesis of tetrafunctional star copolymer, (α‐acetylene‐PCL)2(ω‐azido‐PS)2, by the transition of terminal hydroxyl and bromo groups to acetylene and azido groups through the reaction with 4‐propargyloxybutanedioyl chloride and NaN3 respectively; (3) intramolecular cyclization reaction to produce the hetero eight‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resulted intermediates and the target polymers. Their thermal behavior was investigated by DSC, and their crystallization behaviors of PCL were studied by polarized optical microscopy. The decrease in chain mobility of the eight‐shaped copolymers restricts the crystallization of PCL and the crystallization rate of PCL is slower in comparison with their corresponding star precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6496–6508, 2008  相似文献   

8.
A series of well‐defined θ‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution have been successfully synthesized without any purification procedure by the combination of atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and the “click” chemistry. The synthetic process involves two steps: (1) synthesis of AB2 miktoarm star copolymers, which contain one PCL chain terminated with two acetylene groups and two PS chains with two azido groups at their one end, (α,α′‐diacetylene‐PCL) (ω‐azido‐PS)2, by ROP, ATRP, and the terminal group transformation; (2) intramolecular cyclization of AB2 miktoarm star copolymers to produce well‐defined pure θ‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resultant intermediates and the target polymers. Their thermal behavior was investigated by DSC. The mobility decrease of PCL chain across PS ring in the theta‐shaped copolymers restricts the crystallization ability of PCL segment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2620–2630, 2009  相似文献   

9.
The new SET‐LRP (using Cu(0) powder for organic synthesis) was successfully used to produce well‐defined linear and star homo‐ and diblock‐copolymers of PMA, PSA, and P(MA‐b‐GA)n (where n = 1 or 4). The kinetic data showed that all SET‐LRP were first order and reached high conversions in a short period of time. The other advantage of using such a system is that the copper can easily be removed through filtration, allowing the production of highly pure polymer. The molecular weight distributions were well controlled with polydispersity indexes below 1.1 and the number‐average molecular weight close to theory, especially upon the addition of Cu(II)Br2/Me6‐TREN complex. The linear and star block copolymers were then hydrolyzed to produce the biocompatible amphiphilic P(MA‐b‐GA)n, where the glycerol side‐groups make the outer block hydrophilic. These blocks were micellized into water and found to have a Rg/RH equal to 0.8 and 1.59 for the liner and star blocks, respectively. This together with the TEM's supported that the linear blocks formed the classical core‐shell micelles, where as, the star blocks formed vesicles. We found direct support for the vesicle structure from a TEM where one vesicle squashed a second vesicle consistent with a hollow structure. Such vesicle structures have potential applications as delivery nanoscaled devices for drugs and other important biomolecules. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6346–6357, 2008  相似文献   

10.
4μ‐A2B2 star‐shaped copolymers contained polystyrene (PS), poly(isoprene) (PI), poly(ethylene oxide) (PEO) or poly(ε‐caprolactone) (PCL) arms were synthesized by a combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). Firstly, the functionalized PS or PI with an alkyne group and a protected hydroxyl group at the same end were synthesized by LAP and then modified by propargyl bromide. Subsequently, the macro‐initiator PS or PI with two active hydroxyl groups at the junction point were synthesized by Glaser coupling in the presence of pyridine/CuBr/N,N,N ′,N ″,N ″‐penta‐methyl diethylenetri‐amine (PMDETA) system and followed by hydrolysis of protected hydroxyl groups. Finally, the ROP of EO and ε‐CL monomers was carried out using diphenylmethyl potassium (DPMK) and tin(II)‐bis(2‐ethylhexanoate) (Sn(Oct)2) as catalyst for target star‐shaped copolymers, respectively. These copolymers and their intermediates were well characterized by SEC, 1H NMR, MALDI‐TOF mass spectra and FT‐IR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Using core‐first strategy, the amphiphilic A4B4 star‐shaped copolymers [poly(ethylene oxide)]4[poly(ε‐caprolactone)]4 [(PEO)4(PCL)4], [poly(ethylene oxide)]4[poly(styrene)]4 [(PEO)4(PS)4], and [poly(ethylene oxide)]4[poly(tert‐butyl acrylate)]4 [(PEO)4(PtBA)4] were synthesized by mechanisms transformation combining with thiol‐ene reaction. First, using a designed multifunctional mikto‐initiator with four active hydroxyl groups and four allyl groups, the four‐armed star‐shaped polymers (PEO‐Ph)4/(OH)4 with four active hydroxyl groups at core position were obtained by sequential ring‐opening polymerization (ROP) of ethylene oxide monomers, capping reaction of living oxyanion with benzyl chloride, and transformation of allyl groups into hydroxyl groups by thiol‐ene reaction. Then, the A4B4 star‐shaped copolymers (PEO)4(PS)4 or (PEO)4(PtBA)4 were obtained by atom transfer radical polymerization (ATRP) of styrene or tert‐butyl acrylate (tBA) monomers from macroinitiator of (PEO‐Ph)4/(Br)4, which was obtained by esterification of (PEO‐Ph)4/(OH)4 with 2‐bromoisobutyryl bromide. The A4B4 star‐shaped copolymers (PEO)4(PCL)4 were also obtained by ROP of ε‐caprolactopne monomers from macroinitiator of (PEO‐Ph)4/(OH)4. The target copolymers and intermediates were characterized by size‐exclusion chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy, and nuclear magnetic resonance in detail. This synthetic route might be a versatile one to various AnBn (n ≥ 3) star‐shaped copolymers with defined structure and compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4572–4583  相似文献   

12.
3‐Arm star‐block copolymers, (polystyrene‐b‐poly(methyl methacrylate))3, (PS‐b‐PMMA)3, and (polystyrene‐b‐poly(ethylene glycol))3, (PS‐b‐PEG)3, are prepared using double‐click reactions: Huisgen and Diels–Alder, with a one‐pot technique. PS and PMMA blocks with α‐anthracene‐ω‐azide‐ and α‐maleimide‐end‐groups, respectively, are achieved using suitable initiators in ATRP of styrene and MMA, respectively. However, PEG obtained from a commercial source is reacted with 3‐acetyl‐N‐(2‐hydroxyethyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2‐carboxamide (7) to give furan‐protected maleimide‐end‐functionalized PEG. Finally, PS/PMMA and PS/PEG blocks are linked efficiently with trialkyne functional linking agent 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]‐ethane 2 in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) at 120 °C for 48 h to give two samples of 3‐arm star‐block copolymers. The results of the peak splitting using a Gaussian deconvolution of the obtained GPC traces for (PS‐b‐PMMA)3 and (PS‐b‐PEG)3 displayed that the yields of target 3‐arm star‐block copolymers were found to be 88 and 82%, respectively. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7091–7100, 2008  相似文献   

13.
Dendritic 2‐ and 4‐arm PMMA‐based star polymers with furan‐protected maleimide at their focal point, (PMMA)2n‐MI and (PMMA)4n‐MI were efficiently clicked with the peripheral anthracene functionalized multiarm star polymer, (α‐anthryl functionalized‐polystyrene)m‐poly(divinyl benzene) ((α‐anthryl‐PS)m‐polyDVB) through the Diels–Alder reaction resulting in corresponding multiarm star block copolymers: (PMMA)2n‐(PS)m‐polyDVB and (PMMA)4n‐(PS)m‐polyDVB, respectively. Molecular weights (Mw,TDGPC), hydrodynamic radius (Rh), and intrinsic viscosity (η) of the multiarm star polymers were determined using three‐detection GPC (TD‐GPC). The high efficiency of this methodology to obtain such sterically demanding macromolecular constructs was deduced using 1H‐NMR and UV–vis spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Two samples of ABCD 4‐miktoarm star quarterpolymer with A = polystyrene (PS), B = poly(ε‐caprolactone) (PCL), C = poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA), and D = poly(ethylene glycol) (PEG) were prepared using click reaction strategy (Cu(I)‐catalyzed Huisgen [3 + 2] reaction). Thus, first, predefined block copolymers of different polymerization routes, PS‐b‐PCL with azide and PMMA‐b‐PEG and PtBA‐b‐PEG copolymers with alkyne functionality, were synthesized and then these blocks were combined together in the presence of Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst in DMF at room temperature to give the target 4‐miktoarm star quarterpolymers. The obtained miktoarm star quarter polymers were characterized by GPC, NMR, and DSC measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1218–1228, 2008  相似文献   

15.
The synthesis of five homopolymers (PS)3 and the corresponding diblock copolymer 3‐arm stars of the (PS‐b‐P2VP)3 type is reported through atom transfer radical polymerization. Such star homo‐ and copolymers are prepared without any addition of solvent (bulk polymerization). The kinetics study results lead to the ability of predicting the best polymerization time with high values of monomer to polymer conversion, sufficient polydispersity indices and average molecular weights. Molecular characterization through size exclusion chromatography, viscometry, low‐angle laser light scattering, proton and carbon nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR, respectively) verified the successful synthesis of both homopolymer and copolymer 3‐arm star‐like architectures. Furthermore, the morphological characterization of the final copolymers is reported through transmission electron microscopy studies verifying the self‐assembly without any indication of homopolymer or Cu(I) traces. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 23–32  相似文献   

16.
Multiarm star triblock terpolymers were obtained by using two different click reactions sequentially: Cu(I) catalyzed azide–alkyne and Diels–Alder. The synthetic strategy is described as follows: (poly(methyl methacrylate))n‐(polystyrene)m‐poly(divinyl benzene)) ((PMMA)n‐(PS)m‐polyDVB) multiarm star diblock copolymer was first obtained from an azide–alkyne click reaction of (alkyne‐PS)m‐polyDVB multiarm star polymer with α‐anthracene‐ω‐azide PMMA (anth‐PMMA‐N3), followed by a Diels–Alder click reaction of the anthracene groups at the star periphery with α‐maleimide poly (tert‐butyl acrylate) (PtBA‐MI) or α‐maleimide poly(ethylene glycol) (PEG‐MI) leading to target (PtBA)k‐(PMMA)n‐(PS)m‐polyDVB and (PEG)p‐(PMMA)n‐(PS)m‐polyDVB multiarm star triblock terpolymers. The hydrodynamic diameter of individual multiarm star triblock terpolymers were measured by dynamic light scattering (DLS) to be ~24–27 nm in consistent with the atomic force microscopy (AFM) images on silicon substrates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1557–1564, 2010  相似文献   

17.
The amphiphilic A2B star‐shaped copolymers of polystyrene‐b‐[poly(ethylene oxide)]2 (PS‐b‐PEO2) were synthesized via the combination of atom transfer nitroxide radical coupling (ATNRC) with ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP) mechanisms. First, a novel V‐shaped 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐PEO2 (TEMPO‐PEO2) with a TEMPO group at middle chain was obtained by ROP of ethylene oxdie monomers using 4‐(2,3‐dihydroxypropoxy)‐TEMPO and diphenylmethyl potassium as coinitiator. Then, the linear PS with a bromine end group (PS‐Br) was obtained by ATRP of styrene monomers using ethyl 2‐bromoisobutyrate as initiator. Finally, the copolymers of PS‐b‐PEO2 were obtained by ATNRC between the TEMPO and bromide groups on TEMPO‐PEO2 and PS‐Br, respectively. The structures of target copolymers and their precursors were all well‐defined by gel permeation chromatographic and nuclear magnetic resonance (1H NMR). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Metal template synthesis is a useful methodology to make sophisticated macromolecular architectures because of the variety of metal ion coordination. To use metal template methodology, chelating functionalities should be introduced to macromolecules before complexation. In this article, we demonstrate the click‐to‐chelate approach to install chelating functionality to polystyrene (PS) and complexation with Ru(II) ions to form 3‐arm and 4‐arm star‐branched PS Ru(II) complexes. Azide‐terminated PS (PS‐N3) was readily prepared by atom transfer radical polymerization using 1‐bromoethylbenzene as an initiator followed by substitution of bromine by an azide group. The Cu(I)‐catalyzed 1,3‐dipolar cycloaddition of PS‐N3 with 2‐ethynylpyridine or 2,6‐diethynylpyridine affords 2‐(1H‐1,2,3‐triazol‐4‐yl)pyridine (PS‐tapy) or 2,6‐bis(1H‐1,2,3‐triazol‐4‐yl)pyridine (PS‐bitapy) ligands bearing one or two PS chains at the first‐position of the triazole rings. Ru(II) complexes of PS‐tapy and PS‐bitapy were prepared by conventional procedure. The number‐averaged molecular weights (Mns) of these complexes were determined to be 6740 and 10,400, respectively, by size exclusion chromatography using PS standards. These Mn values indicated the formation of 3‐arm and 4‐arm star‐branched PS Ru(II) complexes [Ru(PS‐tapy)3](PF6)2 and [Ru(PS‐bitapy)2](PF6)2 on the basis of the Mn values of PS‐tapy (2090) and PS‐bitapy (4970). The structures of these complexes were also confirmed by UV–vis spectroscopy and X‐ray crystallography of the Ru(II) complexes [Ru(Bn‐tapy)3](PF6)2 and [Ru(Bn‐bitapy)2](PF6)2, which bear a benzyl group instead of a PS chain. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Polydisperse hyperbranched polyesters were modified for use as novel multifunctional reversible addition–fragmentation chain‐transfer (RAFT) agents. The polyester‐core‐based RAFT agents were subsequently employed to synthesize star polymers of n‐butyl acrylate and styrene with low polydispersity (polydispersity index < 1.3) in a living free‐radical process. Although the polyester‐core‐based RAFT agent mediated polymerization of n‐butyl acrylate displayed a linear evolution of the number‐average molecular weight (Mn) up to high monomer conversions (>70%) and molecular weights [Mn > 140,000 g mol?1, linear poly(methyl methacrylate) equivalents)], the corresponding styrene‐based system reached a maximum molecular weight at low conversions (≈30%, Mn = 45,500 g mol?1, linear polystyrene equivalents). The resulting star polymers were subsequently used as platforms for the preparation of star block copolymers of styrene and n‐butyl acrylate with a polyester core with low polydispersities (polydispersity index < 1.25). The generated polystyrene‐based star polymers were successfully cast into highly regular honeycomb‐structured microarrays. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3847–3861, 2003  相似文献   

20.
A series of well‐defined ABC 3‐Miktoarm star‐shaped terpolymers [Poly(styrene)‐Poly(ethylene oxide)‐Poly(ε‐caprolactone)](PS‐PEO‐PCL) with different molecular weight was synthesized by combination of the “living” anionic polymerization with the ring‐opening polymerization (ROP) using macro‐initiator strategy. Firstly, the “living” poly(styryl)lithium (PS?Li+) species were capped by 1‐ethoxyethyl glycidyl ether(EEGE) quantitatively and the PS‐EEGE with an active and an ethoxyethyl‐protected hydroxyl group at the same end was obtained. Then, using PS‐EEGE and diphenylmethylpotassium (DPMK) as coinitiator, the diblock copolymers of (PS‐b‐PEO)p with the ethoxyethyl‐protected hydroxyl group at the junction point were achieved by the ROP of EO and the subsequent termination with bromoethane. The diblock copolymers of (PS‐b‐PEO)d with the active hydroxyl group at the junction point were recovered via the cleavage of ethoxyethyl group on (PS‐b‐PEO)p by acidolysis and saponification successively. Finally, the copolymers (PS‐b‐PEO)d served as the macro‐initiator for ROP of ε‐CL in the presence of tin(II)‐bis(2‐ethylhexanoate)(Sn(Oct)2) and the star(PS‐PEO‐PCL) terpolymers were obtained. The target terpolymers and the intermediates were well characterized by 1H‐NMR, MALDI‐TOF MS, FTIR, and SEC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1136–1150, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号