首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of organic/inorganic nanocomposite hydrogel was prepared by introducing small amount of natural montmorillonite (MOM) into a poly(vinyl alcohol) (PVA)/sulfonated polyester (PES) system. The crystalline structure and crystallinity degree were determined by differential scanning calorimetry (DSC) and wide angle X-ray spectroscopy (WAXS). The presence of PES leads to an increase in the crystallinity degree of the PVA matrix and a significant decrease in the melting temperature. The addition of small amount of clay (1-5%) resulted in an increase of the average crystallite dimension, crystallinity degree and melting temperature, as compared to the PVA/PES system. The presence of the clay resulted in a substantial increase on the free volume size, as suggesting by positron annihilation lifetime spectroscopy (PALS). This result suggests a lower packing efficiency of the PVA chain and the formation of a PVA-MOM interfacial layer. This interfacial layer and the increasing of the mobility of the PVA chain by the presence of the clay reflects also in a decrease of the glass transition temperature, determined by dynamic mechanical analysis.  相似文献   

2.
To improve the drawability of poly(vinyl alcohol) (PVA) thermal products, poly(ethylene oxide) (PEO), a special resin with good flexibility, excellent lubricity, and compatibility with many resins, was applied, and the Fourier transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WXRD) were adopted to study the hydrogen bonds, water states, thermal properties, crystal structure, and nonisothermal crystallization of modified PVA. It was found that PEO formed strong hydrogen bonds with water and PVA, thus weakened the intra‐ and inter‐hydrogen bonds of PVA, changed the aggregation states of PVA chains, and decreased its melting point and crystallinity. Moreover, the interactions among PVA, water, and PEO retarded the water evaporation and made more water remain in the system to plasticize PVA. The existence of PEO also slowed down the melt crystallization process of PVA, however, increased the nucleation points of system, thus made more and smaller spherulites formed. The weakened crystallization capability of PVA and the lubrication of PEO made PVA chains to have more mobility under the outside force and obtain high mechanical properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1946–1954, 2010  相似文献   

3.
The relationships between the structure and the viscoelastic properties of freeze/thaw PVA hydrogels obtained by repeatedly freezing and thawing dilute solutions of PVA in D2O(11% w/w PVA) in as-prepared and rehydrated states are investigated. Our results indicate that the PVA chains and solvent molecules are organized at different hierarchical length scales, which include the presence of micro- and macro-pores, into a network scaffolding. The porous network is ensured by the presence of crystallites, which act as knots interconnected by portions of PVA chains swollen by the solvent. X-ray diffraction and SANS techniques are used to obtain structural information at short (angstroms) and medium (nanometers) ranges of length scales, concerning the crystallinity, the size of small crystalline aggregates and the average distance between crystallites in PVA hydrogels. Indirect information concerning the structural organization on the large length scales (microns) are provided by viscoelastic measurements. The dynamic shear elastic moduli at low frequency and low strain amplitude, G′, are determined and related to the degree of crystallinity. These data indicate that a minimum crystallinity of 1% is required for these PVA samples to exhibit gel behaviour and have allowed obtaining the order of magnitude of the average mesh size in these gels. Finally, it is shown that the negative effect of aging, inducing worse physical and mechanical properties in these systems, may be prevented using a drying/re-hydration protocol able to keep the physical properties of the as-prepared PVA hydrogels.  相似文献   

4.
Poly(vinyl alcohol) (PVA)/attapulgite (AT) nanocomposite fibers have been prepared by wet spinning. The morphology and mechanical properties of the modified PVA fibers have been characterized with transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), birefringence measurements, and mechanical testing. The PVA/AT nanocomposite fibers show much higher tensile strength, initial modulus, and work to break than pure PVA fibers with the same draw ratio. SEM observations demonstrate that the AT nanorods can align orderly along the fiber axis by stretching and have good adhesion to the fiber matrix. The results of birefringence measurements prove that the modified fibers have higher orientation than pure PVA fibers after stretching. The results of DSC analysis indicate that the crystallinity of the PVA fibers can be increased by the addition of AT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1995–2000, 2006  相似文献   

5.
Poly(vinyl alcohol) (PVA) hydrogels with high water content, good load‐bearing property, low frictional behavior as well as excellent biocompatibility have been considered as promising cartilage replacement materials. However, the lack of sufficient mechanical properties and cell adhesion are two critical barriers for their application as cartilage substitutes. To address these problems, herein, methacrylated PVA with low degree of substitution of methacryloyl group has been synthesized first. Then, methacrylated PVA‐glycidyl methacrylate/hydroxyapatite (PVA‐GMA/Hap) nanocomposite hydrogels have been developed by the photopolymerization approach subsequently. Markedly, both pure PVA‐GMA hydrogel and PVA‐GMA/Hap nanocomposite hydrogels exhibit excellent performance in compressive tests, and they are undamaged during compressive stress–strain tests. Moreover, compared to pure PVA‐GMA hydrogels, 8.5‐fold, 7.4‐fold, and 14.2‐fold increase in fracture stress, Young's modulus and toughness, respectively, can be obtained for PVA‐GMA/Hap nanocomposite hydrogels with 10 wt % Hap nanoparticles. These enhancements can be ascribed to the intrinsic property of PVA‐GMA and strong hydrogen bonding interactions between PVA‐GMA chain and Hap nanoparticles. More interestingly, significant improvement in the cell adhesion can also be successfully achieved by incorporation of Hap nanoparticles. These biocompatible nanocomposite hydrogels have great potential to be used as cartilage substitutes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1882–1889  相似文献   

6.
通过冷冻-熔融法制备了细菌纤维素/聚乙烯醇/聚乙烯吡咯烷酮(BC/PVA/PVP)双网络复合水凝胶,并采用X射线衍射,红外光谱,扫描电镜,力学性能测试等手段对凝胶的结构和性能进行表征.研究发现PVA、PVP通过氢键作用均匀地吸附于纤维微丝周围,将BC纤维有效地分开,因而干燥后的复合凝胶在热水中浸泡后仍可恢复原状;X射线...  相似文献   

7.
冷冻/解冻制备的聚乙烯醇水凝胶的结构和流变性研究   总被引:3,自引:0,他引:3  
研究了冷冻/解冻法制备的不同浓度(5wt%~25wt%)聚乙烯醇(PVA)水凝胶的结构和流变行为之间的关系.由XRD确定了凝胶中PVA的结晶度和晶粒尺寸.用应力流变仪研究了凝胶的流变行为,包括动态模量和蠕变等.在频率为1Hz和低应力的条件下,测量了凝胶的储能模量和损耗模量.在该试验条件下,PVA水凝胶的形变是完全可以回复的.低频率区和低应变区的储能模量随浓度增加而变大,但当浓度超过20wt%时,储能模量增加速率明显降低.由PVA水凝胶在1Hz时的储能模量和结晶度的数据,理论分析得到了形成PVA水凝胶的最低PVA浓度和最小结晶度.当PVA浓度低于15wt%时,储能模量主要由PVA的微晶控制,分子链间的氢键影响很小.通过低应变区储能模量的数值计算出了凝胶网孔尺寸的结构参数.同时对不同温度下PVA水凝胶的储能模量数据进行了标度分析.PVA水凝胶的蠕变行为显示,随浓度提高,凝胶的蠕变黏弹性由线性向非线性转变.  相似文献   

8.
The preparation and characterization of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported. Organophilic clay (clay treated with dimethyl dihydrogenated tallow quaternary ammonium chloride) was used for the nanocomposite preparation. The composites were characterized with X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). XRD results indicated the intercalation of the polymer in the interlayer spacing. The incorporation of clay in PVDF resulted in the β form of PVDF. DSC nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity. Isothermal crystallization studies show an enhanced rate of crystallization with the addition of clay. DMA indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 31–38, 2003  相似文献   

9.
Thermal and dynamic mechanical properties of PES/PPS blends   总被引:1,自引:0,他引:1  
Blends of poly(ether-sulfone) (PES) and poly(phenylene sulfide) (PPS) with various compositions were prepared using an internal mixer at 290°C and 50 rpm for 10 min. The thermal and dynamic mechanical properties of PES/PPS blends have been investigated by means of DSC and DMA. The blends showed two glass transition temperatures corresponding to PPS-rich and PES-rich phases. Both of them decreased obviously for the blends with PES matrix. On the other hand, Tg of PPS and PES phase decreased a little when PPS is the continuous phase. In the blends quenched from molten state the cold crystallization temperature of PPS was detected in the blends of PES/PPS with mass ratio 50/50 and 60/40. The melting point, crystallization temperature and the crystallinity of blended PPS were nearly unaffected when the mass ratio of PES was less than 60%, however, when the amount of PES is over 60% in the blends, the crystallization of PPS chains was hindered. The thermal and the dynamic mechanical properties of the PPS/PES blends were mainly controlled by the continued phase. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The drying mechanism of semicrystalline poly(vinyl alcohol) (PVA) was investigated. PVA samples of various molecular weights were crystallized by annealing at temperatures slightly above the glass transition temperature of PVA, and swollen in water for different time periods. The water volume fraction in the sample was measured using a buoyancy technique. The samples were dried in air at constant temperatures, and the drying kinetics were investigated using thermogravimetric analysis. The change in degree of crystallinity of the swollen polymer during drying was measured by differential scanning calorimetry (DSC) as well as by Fourier transform infrared spectroscopy (FTIR). The degree of crystallinity of the samples increased during drying, which in turn was found to alter the drying rate. The drying kinetics were faster at higher temperatures, for lower molecular weights, and for lower degrees of crystallinity. A mathematical model was developed to predict drying rates of semicrystalline polymers by considering the crystallization kinetics during drying. The model predictions included the thickness of the polymer sample, the degree of crystallinity of the polymer, and the water weight loss as functions of drying time. Model predictions were found to agree reasonably well with the experimental results. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2771–2780, 1998  相似文献   

11.
Poly(vinylidene chloride‐co‐vinylchloride)/organically modified fluorinated synthetic mica (MEE) (VDC‐VC/MEE) nanocomposites were prepared by melt blending of VDC‐VC copolymer with MEE, in the presence of dioctyl phthalate (DOP) which acted as a plasticizer and a cointercalating agent. The nanostructure, thermal, and dynamic mechanical properties of the VDC‐VC/MEE nanocomposites were studied by wide angle X‐ray diffractometer (WAXD), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). It was found that partially intercalated and partially exfoliated structures coexisted in VDC‐VC/MEE nanocomposities. Below 8 wt % MEE content, the intercalation effect of nanocomposites decreased with increasing the MEE content. Under a nitrogen atmosphere, VDC‐VC/MEE nanocomposites exhibited a single step thermal degradation behavior. The nanostructure of VDC‐VC/MEE can effectively prevent volatile gases from being released, and thus enhances its thermal stability. The thermal stability of VDC‐VC/MEE nanocomposites is strongly related to the morphology of nanocomposites and the degraded composites structure. DMA revealed a significant improvement in the storage modulus within the testing temperature range. The increase in storage modulus depends on the MEE content, which is attributed to the dispersed phase morphology. The glass transition temperature of VDC‐VC/MEE nanocomposites is affected by the chain mobility in the nanocomposites rather than the aggregative morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1214–1225, 2008  相似文献   

12.
Poly(vinyl alcohol) (PVA) was partially modified by polymer analogous reaction with acrylic and methacrylic acid and with 2-vinyl-4,4-dimethyl-azlactone to obtain water-soluble polymers with pendant (meth)acrylate and acrylamide groups. Aqueous solutions of these polymers were crosslinked by UV-irradiation within seconds to form transparent networks with potential for use in contact lenses. The water content of these hydrogels was studied as a function of polymer molecular weight, the acetate, (meth)acrylate, and methacrylamide contents and irradiation conditions. The hydrogels showed good mechanical properties, even at low crosslinker (<5 mol %) and high water contents (60–80%). The formation kinetics and stability of aggregates, investigated by combined GPC/light-scattering measurements of samples annealed and/or stored at different temperatures (−20 to 100°C), give insight into PVA secondary structures. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3603–3611, 1997  相似文献   

13.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

14.
A novel protocol for preparing magnetic poly(vinyl alcohol) (PVA) beads by reverse spray suspension crosslinking was reported. The hydrophilic Fe3O4 nanoparticles were mixed with PVA, glutaraldehyde, and water to form aqueous phase. Then the aqueous phase was sprayed into vegetable oil by a pressure of nitrogen gas to form water in oil (W/O) suspension. The magnetic PVA beads were obtained in the presence of hydrochloric acid catalyst. It was found that the magnetic PVA beads obtained good properties when the PVA concentration was 10%, and the oil phase temperature was controlled at 40 °C. The mechanical stirring has little impact on the size of magnetic PVA beads in the process of reverse spray suspension crosslinking. The Cibacron Blue (CB) was coupled on the surface of magnetic PVA beads by surface chemical reaction. The morphology, size, and magnetic properties of the magnetic PVA beads were examined by scanning electron microscopy, laser diffraction, and vibrating sample magnetometer, respectively. Compared with the stirring method, it was found that the size of magnetic PVA beads was monodisperse and their saturation magnetization was much higher. Fourier transform infrared and X‐ray photoelectron spectroscopy experimental results proved that CB molecules were covalently immobilized onto the surface of the magnetic PVA beads. Meanwhile, the protein affinity separation experiments demonstrated that the magnetic PVA beads can potentially be used as a carrier for large‐scale protein separation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 203–210, 2008  相似文献   

15.
Poly(vinyl alcohol) (PVA) physical hydrogels were prepared by repeated freeze–thawing cycles using aqueous solutions of two PVA samples having different degrees of syndiotacticity, a‐PVA and s‐PVA with 55% and 61% of syndiotactic diads, respectively. The hydrogels were prepared in the presence of different amounts of lactosilated chitosan derivatives (LC) of different molecular weight. The PVA stereoregularity was found to have a dramatic effect on the amount of PVA incorporated into the hydrogels, leading to remarkable differences in the swelling degree and porosity of a‐PVA and s‐PVA hydrogels. A significant amount of LC was retained in the hydrogels after equilibrium swelling. The swelling of the a‐PVA hydrogels was found to increase significantly by increasing the amount of LC while it was only slightly increased in the case of s‐PVA hydrogels. The amount of LC released after equilibrium swelling was lower when chitosan derivatives with higher molecular weights were used. Increased initial concentrations of LC resulted in much higher porosity of the hydrogels. TGA and DSC studies showed that LC is stabilized by the incorporation in the PVA hydrogels. The melting temperature of the crystalline regions of PVA was not significantly influenced by LC. Conversely, the extension of the crystalline domains increased in the presence of LC. The retention of a chitosan derivative bearing β‐D ‐galactose side chain residues makes these hydrogels potentially useful as scaffolds for hepatocytes culture.

Scanning electron micrographs of PVA‐LC hydrogels: (a) a‐PVA; (b) a‐PVA/LC150 80:20; (c) a‐PVA/LC150 50:50.  相似文献   


16.
The miscibility and the thermal behaviour of chitosan acetate (ChA) with poly(vinyl alcohol) (PVA) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Chitosan is blended with poly(vinyl alcohol) in acetic acid solution and this solution is cast to prepare the blend film. From thermal curves the thermal transitions: Tg, Tm and characteristic temperatures of decomposition: Tdi, Tmax have been determined and compared. The influence of the degree of PVA hydrolysis on the thermal properties of blend systems has been discussed.Based upon the observation on the DSC analysis, the melting point of PVA is decreased when the amount of ChA in the blend film is increased. Though some broadening of the transition curves could be noticed (DSC, TGA and DMA), the obtained results suggest that in the solid ChA/PVA blends the components are poorly miscible. Only PVA sample with relatively low DH = 88% and hence low degree of crystallinity shows partial miscibility with ChA of relatively low molecular weight.  相似文献   

17.
pH‐sensitive nanoclay composite hydrogels based on N‐isopropylacrylamide (NIPA) were synthesized by copolymerization with cationic and anionic comonomers. Laponite nanoclay particles served as multifunctional crosslinkers, producing hydrogels with exceptionally high mechanical strengths, as measured by elongation at break. Cationic copolymer gels based on NIPA and dimethylaminoethylmethacrylate were prepared by aqueous free radical polymerization, adopting a procedure reported by Haraguchi (Adv Mater 2002, 14, 1120–1124). Without modification, this technique failed to produce anionic copolymer gels of NIPA and methacrylic acid (MAA), due to flocculation of clay particles. Three methods were conceived to incorporate acidic MAA into nanoclay hydrogels. First, NIPA was copolymerized with sodium methacrylate under dilute conditions, producing hydrogels with good pH‐sensitivity but weak mechanical characteristics. Second, NIPA was copolymerized with methyl methacrylate, which was then hydrolyzed to generate acid sidegroups, yielding hydrogels that were much stronger but less pH sensitive. Third, NIPA was copolymerized with MAA following modification of the nanoclay surface with pyrophosphate ions. The resulting hydrogels exhibited both strong pH‐sensitivities at 37 °C and excellent tensile properties. Optical transparency changed during polymerization, depending on hydrophobicity of the components. This work increases the diversity and functionality of nanoclay hydrogels, which display certain mechanical advantages over conventionally crosslinked hydrogels. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6630–6640, 2008  相似文献   

18.
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007  相似文献   

19.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

20.
层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究   总被引:1,自引:0,他引:1  
采用叠层复合与物理相分离的方法制备了层状纳米细菌纤维素(BC)膜/聚乙烯醇( PVA)复合水凝胶.研究了聚乙烯醇的质量百分数、BC膜的复合层数以及制备条件对复合水凝胶力学性能的影响;通过扫描电镜( SEM)观察比较了复合水凝胶中BC膜层与PVA界面结合情况.结果表明,复合水凝胶的力学性能与PVA的质量百分数和BC膜含水...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号