首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
在 2 0 0 SN矿物基础油中 ,用原位合成法、复分解法以及微波辅助合成法分别合成了月桂酸铅、油酸铅、环烷酸铅、硬脂酸铅和烷基水杨酸铅 .用四球摩擦磨损试验机 ,在高速低负荷及低速高负荷两组试验条件下评价了其摩擦学性能 .结果表明 :不同结构羧酸铅的油溶性、抗磨减摩性能以及抗极压性能存在较大差异 ,其摩擦学性能与羧基结构密切相关 ,环烷酸铅和烷基水杨酸铅的油溶性最好 ;月桂酸铅的抗磨性能和抗极压性能最好 ,油酸铅的减摩性能最好 .通过对铅盐分子结构及相应钢球磨斑表面进行扫描电子显微镜和 X射线光电子能谱分析 ,发现铅盐对基础油摩擦学性能的改善归因于摩擦过程中有机铅盐在摩擦副表面形成一定强度的吸附膜以及部分吸附膜转化为铅氧化物膜的摩擦化学反应 .铅盐烷基链结构的不同使其在摩擦副表面的吸附量和吸附强度不同 ,从而影响润滑油膜的化学组成和物理性能 ,并进而产生摩擦学性能差异  相似文献   

2.
发展高性能离子液润滑脂是离子液体作为新型润滑材料在摩擦学领域的热点和重点.针对这一问题,用三丁基烷基季膦盐离子液体为基础油,聚四氟乙烯微粉为稠化剂制备了三种具有较高滴点的润滑脂.在钢/钢摩擦副表面摩擦学研究结果表明:与1-辛基-3甲基咪唑磷酸二辛基酯盐离子液体润滑脂相比,在室温和高温(100℃)下,三丁基烷基季膦盐离子液体润滑脂均具有优异的减摩抗磨性能.通过磨斑表面的XPS分析和电场条件下考察离子液体润滑脂摩擦系数变化,推断三丁基烷基季膦盐离子液体润滑脂的减摩抗磨机理为离子液体润滑脂中的聚四氟乙烯与摩擦表面发生摩擦化学反应生成含FeF_2的化学反应膜,以及离子液体阳离子、阴离子以物理吸附的方式在摩擦表面形成稳定吸附膜.  相似文献   

3.
合成了两种脲基功能化的咪唑无卤素离子液体DOSS-1和DOSS-4. 采用SRV-V微动摩擦磨损试验机和Bruker-NPFLEX表面非接触光学三维轮廓仪,考察这两种离子液体作为2号复合锂基润滑脂(G)的减摩抗磨添加剂的摩擦学性能. 摩擦测试结果表明:这两种功能化咪唑离子液体添加到2号复合锂基润滑脂(G)中均表现出优异的减摩抗磨性能. 在添加量同等条件下,长链的DOSS-4表现出优于DOSS-1的减摩抗磨性能. 当添加质量分数为3%时,DOSS-4和DOSS-1的减摩抗磨性能最佳. 利用表面轮廓和扫描电镜进一步分析了磨斑表面的形貌,同时结合X射线光电子能谱仪(XPS)进一步分析了磨斑表面主要化学元素组成,阐明其摩擦机理. 该离子液体能够显著地降低摩擦磨损是因其在摩擦副表面形成了含N元素和S元素的化学反应膜.   相似文献   

4.
渗硫层与FeS粉末摩擦学机理的对比研究   总被引:1,自引:0,他引:1  
为了改善GCr15轴承钢在脂润滑条件下的摩擦学性能,通过2种方法将FeS固体润滑材料应用于脂润滑下轴承钢材料的摩擦过程中.通过低温离子渗硫处理在轴承钢表面制取渗硫层;将FeS材料研磨成微米粉末添加到润滑脂中.在球-盘摩擦磨损试验机上对比研究了轴承钢渗硫层和使用FeS微米粉末的摩擦学性能.研究表明:在材料表面制取渗硫层和使用FeS粉末均可有效改善轴承钢在脂润滑条件下的减摩抗磨性能.在较低转速和载荷下,轴承钢表面渗硫层的摩擦磨损性能较使用FeS粉末更好,而在高速重载的工况下,轴承钢表面在使用FeS粉末时体现出更好的抗磨性能.  相似文献   

5.
在200SN矿物基础油中,用原位合成法、复分解法以及微波辅助合成法分别合成了月桂酸铅、油酸铅、环烷酸铅、硬脂酸铅和烷基水杨酸铅,用四球摩擦磨损试验机,在高速低负荷及低速高负荷两组试验条件下评价了其摩擦学性能。结果表明:不同结构羧酸铅的油溶性、抗磨减摩性能以及抗极压性能存在较大差异,其摩擦学性能与羧基结构密切相关,环烷酸铅和烷基水杨酸铅的油溶性最好;月桂酸铅的抗磨性能和抗极压性能最好,油酸铅的减摩性能最好。通过对铅盐分子结构及相应钢球磨斑表面进行扫描电子显微镜和X射线光电子能谱分析,发现铅盐对基础油摩擦学性能的改善归因于摩擦过程中有机铅盐在摩擦副表面形成一定强度的吸附膜以及部分吸附膜转化为铅氧化物膜的摩擦化学反应。铅盐烷基链结构的不同使其在摩擦副表面的吸附量和吸附强度不同,从而影响润滑油膜的化学组成和物理性能,并进而产生摩擦学性能差异。  相似文献   

6.
采用液相还原法制备了纳米镍掺杂白云母微粉(Muscovite,简记为Mu)的复合粉体Mu/Ni,表征了复合粉体的微观形貌、晶体结构和元素组成.利用环-块摩擦磨损试验机考察并比较了Mu/Ni和Mu作为锂基润滑脂添加剂的摩擦学性能,对磨损表面的粗糙度、二维和三维形貌以及元素组成进行了分析,探讨了Mu/Ni复合粉体的减摩抗磨机理.结果表明:复合粉体中纳米镍粒子均匀负载在白云母微粉表面,Mu/Ni和Mu作为添加剂均能有效提高锂基润滑脂的摩擦学性能,且Mu/Ni相比于Mu表现出更好的减摩抗磨性能,摩擦系数较锂基润滑脂降低了67.9%.Mu/Ni优良的摩擦学性能与白云母的层状结构及磨损表面生成的含有O、Fe、Si、Al和Ni等元素的润滑膜有关.  相似文献   

7.
合成了不同链长的N/P无卤素离子液体(NPILs:缩写为NP-11114,NP-11116,NP-11118)润滑剂,以聚α-烯烃(PAO 10)和卤素离子液体1-辛基3-甲基咪唑六氟磷酸盐(L-P 108)作为参照样,评价NPILs、PAO 10及L-P 108之间黏温性能、热稳定性以及室温和高温条件下的钢/钢摩擦副润滑剂的性能差异,探索了NPILs阳离子链长变化对其物理化学性质和摩擦学性能的影响规律. 结果表明:NPILs的黏度高于PAO 10和L-P 108,热分解温度低于PAO 10和L-P 108,NPILs黏度和热分解温度随着链长的增加而增加. 作为钢/钢摩擦副的润滑剂时,NPILs室温状态下减摩性能不及L-P108,但是NP-11118的抗磨性能优于L-P108;高温状态下,NPILs的减摩抗磨性能均优于L-P 108. 在常温和高温下NPILs相比PAO 10均具有优异的减摩抗磨性能,而且摩擦学性能随着烷基链长的增加而提高. 通过对磨斑表面进行扫描电镜分析证明这类离子液体具有优异的抗磨性能,通过EDS和XPS对磨斑表面的元素进行分析结果表明这类离子液体优异的摩擦学性能归因于离子液体结构中包含的N、P元素与金属基底发生摩擦化学反应所形成的具有优异减摩抗磨特性的摩擦化学反应膜.   相似文献   

8.
使用改进后的四球摩擦磨损试验机考察了不同电磁场强度和不同载荷条件下菜籽油的摩擦学性能,结合扫描电子显微镜(SEM)、X射线能谱仪(EDS)和X射线光电子能谱仪(XPS)分析了磨斑的表面形貌及表面典型元素的化学状态,并对摩擦学机理进行了初步探讨.结果表明:在所考察的工况下,电磁场有利于改善菜籽油的抗磨减摩性能,其强度越大,对菜籽油抗磨减摩性能的改善效果越好;电磁场通过促进吸附膜的吸附作用和O元素与金属表面作用,有利于在磨斑表面生成更厚、更致密的摩擦化学反应膜,从而增强了菜籽油的抗磨减摩性能;不同强度的电磁场可能会改变长链菜籽油分子在摩擦界面的吸附形态而影响其减摩性能.  相似文献   

9.
油酸修饰纳米氟化钙的萃取法制备及其摩擦学性能   总被引:1,自引:0,他引:1  
采用萃取法制备了油酸修饰的纳米CaF2,用X射线衍射(XRD)对纳米CaF2粉体样品进行物相分析,同时用透射电子显微镜(TEM)及傅立叶变换红外光谱仪(FT-IR)进行表面形貌和成分分析,并在四球摩擦磨损试验机上评价了CaF2在润滑脂中的摩擦学性能.结果表明,制备的纳米CaF2粒径在23 nm左右,油酸以化学吸附的方式吸附在CaF2纳米核表面;作为添加剂油酸修饰纳米CaF2在润滑脂中具有良好的抗磨性能和极压性能,在高载荷时具有良好的减摩性能.SEM,EDS和XPS分析表明在摩擦过程中形成了由CaF2、CaO、氧化铁和有机添加剂所组成的边界润滑膜,从而使OA-CaF2具有良好的摩擦学性能.  相似文献   

10.
首先通过摩擦学和电化学方法,对比研究了B-N系添加剂(三乙醇胺硼酸酯,TAB)和P系添加剂(磷酸三甲酚酯,TCP)2种有机功能分子高温重载条件下在聚乙二醇(PEG)基础油中的摩擦学行为,以及在盐酸腐蚀溶液中的缓蚀性能.然后采用扫描电子显微镜与X射线光电子能谱等表面分析手段对磨损表面和腐蚀表面的微观形貌进行深入研究,并分析讨论了2种有机功能分子的高温润滑承载和缓蚀机理. 2种有机功能分子作为PEG添加剂的承载能力均超过了400 N,表现出优异的高温极压性能.在高温重载摩擦磨损试验中,TAB作为添加剂能够显著降低PEG基础油的摩擦系数和磨损量,表现出良好的减摩抗磨效果;对于TCP而言,作为添加剂可以明显降低PEG基础油摩擦系数,却表现出加剧磨损的现象.电化学试验结果表明,2种有机功能分子都具有一定的缓蚀作用,TAB缓蚀效率优于TCP.结合表面分析结果发现,TAB作为添加剂能够在金属表面形成较强吸附膜以及以硼酸酯、硼的氧化物和氮化物为主的非牺牲性摩擦膜,从而表现出良好的缓蚀性能和优异的高温极压抗磨性能;TCP作为添加剂与金属表面发生了较为剧烈的摩擦化学反应,生成以磷酸铁和氧化铁为主的致密摩擦...  相似文献   

11.
二硫化钨纳米粉体作为锂基润滑脂添加剂的摩擦学研究   总被引:2,自引:1,他引:1  
制备了二硫化钨纳米粉体作为添加剂的锂基润滑脂,采用SRV-Ⅳ摩擦磨损试验机考察了二硫化钨对锂基润滑脂摩擦学性能的影响,利用扫描电子显微镜(SEM)、能量色散X射线光谱仪(EDAX)、X射线光电子能谱仪(XPS)对磨损表面的微观形貌、元素含量和价态进行了表征,分析了其润滑机理.结果表明:二硫化钨纳米粉体能够显著提高锂基润滑脂的摩擦学性能.摩擦过程中,二硫化钨纳米粉体在摩擦副表面产生吸附沉积,并在高温高负荷条件下生成含有Fe_2O_3、FeSO_4、WO_3和Fe_3O_4的化学反应膜,从而共同产生润滑作用.  相似文献   

12.
采用热压烧结的方法制备了添加WS2质量百分数为10%、20%和30%的Fe-28Al-5Cr基复合材料,通过XRD和SEM等手段分析了样品的相组成和组织结构.利用自制的真空摩擦试验机测试了样品在4×10-4Pa真空下的摩擦学性能.研究结果显示:通过与WS2的复合能够显著降低Fe3Al基金属间化合物在真空条件下的摩擦系数,但三种不同WS2含量复合材料的摩擦系数差别不大.随着WS2含量增加,复合材料的磨损率逐渐降低,特别是30%复合材料的磨损率较纯Fe-28Al-5Cr的磨损率低约1个数量级.滑动速度和载荷对三种材料的摩擦系数和磨损率均有一定的影响.纯Fe3Al的磨损表面较为粗糙,出现严重的剥落坑和剥落痕迹,磨损机理为严重的疲劳磨损.添加质量百分数为10%WS2的复合材料的磨损机理为磨粒磨损和疲劳磨损;添加WS2质量百分数为20%和30%的复合材料,其磨损表面相对较为光滑平整,磨损机理为轻微剥落.因此,在复合材料制备中添加WS2能够显著提高Fe3Al金属间化合物的真空摩擦学性能.  相似文献   

13.
采用粉末冶金技术制备了纳米SiC陶瓷颗粒(0.0%、1.0%、2.2%和3.4%,质量分数,后面未作特殊说明,均为质量分数)强化的CoCrMo基高温抗磨复合材料,对复合材料的相组成及高温摩擦学性能进行了系统性研究.在室温至1 000℃范围内利用球-盘式高温摩擦试验机测试了材料的高温摩擦学性能.结果表明:复合材料的基体主要由γ (fcc)和ε (hcp)合金相构成,加入纳米SiC后复合材料出现了MoCr相,这有利于复合材料硬度的提高;纳米SiC提高了复合材料的硬度,同时降低了复合材料的密度;摩擦系数与纳米SiC的含量和温度相关,摩擦系数随纳米SiC含量的增加而增大,室温至800℃的摩擦系数整体呈下降趋势,1 000℃时含2.2%和3.4%SiC的复合材料具有较低的摩擦系数;高温环境下复合材料的抗磨损性能随纳米SiC含量的增加而显著提高;复合材料的磨损机理在不同温度下存在差异,随着温度升高,磨损机理逐渐由磨粒磨损和塑性变形转变为氧化磨损.室温至1 000℃范围内CoCrMo-2.2%SiC具有较优异的高温抗磨损性能,这主要归因于复合材料的高硬度和磨损表面完整的氧化物润滑层.  相似文献   

14.
采用射频非平衡磁控溅射技术制备了具有不同(002)择优取向程度的WS2薄膜,研究了Ar流量对薄膜成分、微观结构、力学性能和摩擦学性能的影响.研究表明:随Ar流量的增大,WS2薄膜的S/W原子比和(002)衍射峰强度均表现出先降低后升高的变化趋势,而硬度和弹性模量表现出先升高后降低的变化趋势.在大气环境下,WS2薄膜的(002)择优取向程度、S/W原子比以及硬度对薄膜的摩擦学性能均具有显著影响,当S/W原子比较低、(002)择优取向度弱、硬度较高时,薄膜脆性较大,易于发生润滑失效;当S/W原子比、(002)择优取向度和硬度均较高时,薄膜结构致密,且摩擦过程中在对偶表面易于形成有效的转移膜,薄膜表现出较好的减摩、抗黏着特性和优异的抗磨性能.  相似文献   

15.
表面修饰SiO2纳米微粒对锂基脂抗磨性能影响的研究   总被引:9,自引:4,他引:9  
合成了表面修饰SiO2纳米微粒,利用四球摩擦磨损试验机考察了SiO2纳米微粒作为锂基脂添加剂的摩擦磨损行为,用扫描电子显微镜、能量色散谱仪和X射线光电子能谱仪对钢球磨损表面进行了分析.结果表明:SiO2纳米微粒作为锂基脂添加剂具有良好的抗磨损性能,能够显著提高锂基脂的失效载荷.这是由于在摩擦过程中,SiO2纳米微粒富集在磨损表面并形成边界润滑膜,对磨损表面起到修复作用,从而使得锂基脂的抗磨和承载能力明显提高.  相似文献   

16.
30CrMnSiNi2A钢干滑动摩擦磨损特性研究   总被引:3,自引:3,他引:0  
利用销盘高速干滑动摩擦磨损试验机,对30Cr Mn Si Ni2A低合金超高强度钢的摩擦磨损性能进行了研究,应用JSM-6390A型扫描电子显微镜和X-衍射方法对摩擦磨损表面进行观察,表征其摩擦表面的微观形貌、摩擦磨损产生的磨屑以及由于摩擦产热而引起的氧化物,进而推断出磨损机制.结果表明:摩擦系数随速度和载荷的增大而减少,其速度是影响摩擦系数的主要因素;在摩擦初期当摩擦系数快速下降时,摩擦表面温度急剧增加,当达到一定数值后二者都形成一个动态的平衡;随着速度和载荷增大,磨损机理主要由氧化磨损转变为剥落、塑性变形、犁沟以及黏着磨损,且磨损表层的氧化物由Fe O转变为Fe_3O_4和Fe_2O_3,当出现Fe_2O_3氧化物时,磨损率急剧升高.  相似文献   

17.
速度和载荷对脂润滑2Cr13钢离子渗氮层摩擦学行为的影响   总被引:1,自引:0,他引:1  
利用销-盘式摩擦磨损试验机对不同速度和载荷条件下 PFPE脂润滑2Cr13钢离子渗氮层进行了系统的真空滑动摩擦磨损试验.采用扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)和傅里叶变换红外光谱(FTIR)分别对磨损表面的形貌、化学状态及润滑脂的成分进行分析.结果表明:随着载荷和滑动速度的增加,脂润滑渗氮层的磨损机制由轻微磨损向轻微复合磨损机制转变.在真空摩擦磨损过程中2Cr13钢离子渗氮层与PFPE润滑脂发生化学反应,并有FeF3生成,促进PFPE润滑脂发生降解,形成酸性的氟化物.增加载荷和速度会加速渗氮层与润滑脂之间的反应,进一步促进润滑脂的降解.  相似文献   

18.
利用销-盘式摩擦磨损试验机对PFPE脂润滑2Cr13钢摩擦副进行了不同滑动时间的真空滑动摩擦磨损试验.采用扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)和傅里叶变换红外光谱(FTIR)分别对磨损表面的形貌、化学状态及润滑脂的结构和成分进行了系统分析.结果表明:随着滑动时间的增加,由微切削磨损、轻微腐蚀磨损向严重腐蚀磨损、轻度局部剥落继续向严重黏着磨损、严重局部剥落的严重复合磨损转变.在真空摩擦过程中PFPE润滑脂主要以物理退化为主,即润滑脂中基础油和增稠剂的相对比例发生变化.同时,PFPE润滑脂与2Cr13钢在摩擦过程中发生化学反应,生成具有催化作用的Fe F3.但由于所生成的Fe F3量较少,并未使PFPE润滑脂发生化学降解.  相似文献   

19.
磁控溅射沉积高承载、低摩擦MoS_2/Ti复合薄膜   总被引:2,自引:0,他引:2  
采用磁控溅射技术制备了不同Ti含量的Mo S2/Ti复合薄膜,利用SEM、AFM、纳米压痕仪、XRD和CSM摩擦试验机分析了复合薄膜的结构、力学和摩擦学性能.结果表明:复合薄膜结构致密,表面光滑平整,且具有较高的硬度,Ti含量较低的Mo S2/Ti复合薄膜呈现以(002)基面为主的择优取向;在大气环境下,赫兹接触应力为2.5 GPa的摩擦工况下,Ti含量较低的Mo S2/Ti复合薄膜的摩擦系数低至0.02,磨损率低至10-17m3/(N·m)数量级,呈现出高承载、低摩擦、耐磨损的优异摩擦学性能.这是由于Ti的掺杂一方面提高了复合薄膜的力学和抗氧化性能,另一方面复合薄膜的(002)基面取向对其摩擦磨损性能发挥了重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号