首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DPTM simulation of aeolian sand ripple   总被引:1,自引:1,他引:1  
Aeolian sand ripple and its time evolution are simulated by the discrete particle tracing method (DPTM) presented in this paper. The difference between this method and the current methods is that the former can consider the three main factors relevant to the formation of natural aeolian sand ripples, which are the wind-blown sand flux above the sand bed formed by lots of sand particles with different diameters, the particle-bed collision and after it the rebound and ejection of sand particles in the sand bed, the saltation of high-speed sand particles and the creep of low-speed sand particles, respectively. The simulated aeolian sand ripple is close to the natural sand ripple not only in basic shape and characteristic, particle size segregation and stratigraphy, but also in formation stages. In addition, three important speeds can be obtained by this method, which are the propagation speed of the saturated aeolian sand ripple and the critical frictional wind speeds of emergence and disappearance of sand ripple. Supported by the Key Project of the National Natural Science Foundation of China (Grant No. 10532040)  相似文献   

2.
The unsteady turbulent channel flow subject to the temporal acceleration is considered in this study. Large-eddy simulations were performed to study the response of the turbulent flow to the temporal acceleration. The simulations were started with the fully developed turbulent channel flow at an initial Reynolds number of Re0 = 3500 (based on the channel half-height and the bulk-mean velocity), and then a constant temporal acceleration was applied. During the acceleration, the Reynolds number of the channel flow increased linearly from the initial Reynolds number to the final Reynolds number of Re1 = 22,600. The effect of grid resolution, domain size, time step size on the simulation results was assessed in a preliminary study using simulations of the accelerating turbulent flow as well as simulations of the steady turbulent channel flow at various Reynolds numbers. Simulation parameters were carefully chosen from the preliminary study to ascertain the accuracy of the simulation. From the accelerating turbulent flow simulations, the delays in the response of various flow properties to the temporal acceleration were measured. The distinctive features of the delays responsible for turbulence production, energy redistribution, and radial propagation were identified. Detailed turbulence statistics including the wall shear stress response during the acceleration were examined. The results reveal the changes in the near-wall structures during the acceleration. A self-sustaining mechanism of turbulence is proposed to explain the response of the turbulent flow to the temporal acceleration. Although the overall flow characteristics are similar between the channel and pipe flows, some differences were observed between the two flows.  相似文献   

3.
Using the method of large-eddy simulation, the 3-dimensional turbulent jets in crossflow with stream-wise and transverse arrangements of nozzle are simulated, emphasizing on the dynamical process of generation and evolution of vortex structures in these flows. The results show that the basic vortex structures in literatures, such as the counter-rotating vortex pair, leading-edge vortices, lee-side vortices, hanging vortices, kidney vortices and anti-kidney vortices, are not independent physical substances, but local structures of the basic vortex structure of turbulent jets in crossflow-the 3-D stretching vortex rings originating from the orifice of the nozzle, which is discovered in this study. Therefore, the most important large-scale structures of turbulent jets in crossflow are unified to the 3-D vortex rings which stretch and twist in stream-wise and swing in transverse directions. We also found that the shedding frequencies of vortex rings are much lower than the one corresponding to the appearance of leading-edge and lee-side vortices in the turbulent jets.  相似文献   

4.
A premixed propane–air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and destruction in the model afterburner.  相似文献   

5.
平面撞击流偏斜振荡的实验研究与大涡模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
屠功毅  李伟锋  黄国峰  王辅臣 《物理学报》2013,62(8):84704-084704
采用实验和大涡模拟对喷嘴出口雷诺数(Re= U0 /μ, 其中 U0为出口平均速度, h为平面喷嘴出口狭缝高度, ρμ分别为流体的密度与动力黏度)为25–10000, 喷嘴间距 L为4h–40h范围内的平面撞击流偏斜振荡特性进行了研究. 通过对平面撞击流模拟和实验的结果进行比较, 验证了数值模拟的可靠性, 并对平面撞击流发生偏斜振荡的无因次参数(喷嘴间距 L/h与出口雷诺数 Re)范围进行划分, 重点考察了湍流平面撞击流的偏斜振荡周期及速度-压力变化特征. 研究结果表明大涡模拟能对平面撞击流的偏斜振荡进行有效预报; 当平面撞击流发生周期性偏斜振荡时, 特定点的压力与速度也发生周期性变化, 且变化周期与偏斜振荡周期一致, 偏斜振荡本质上是由速度-压力的周期性变化和转换引起的. 关键词: 平面撞击流 偏斜振荡 大涡模拟  相似文献   

6.
In this paper, large-eddy simulations of Vreman's model (VM) have been carried out to investigate its performances in a temporal transitional channel flow and in high Reynolds number turbulent channel flows. As a preliminary work, it is found that cubic root of the cell volume is the best choice of filter width for both VM and dynamic VM based on Germano identity (DVM), according to comparative studies and a-posteriori analyses at Reτ = 590. VM and DVM are then used to simulate the temporal laminar–turbulent transitional channel flow, and the results turn out that VM and DVM are capable to simulate this temporal transient flow. In simulating high Reynolds number turbulent channel flows with a relatively coarse grid resolution, DVM itself shares the same weakness as the dynamic Smagorinsky model, while it can successfully predict the mean velocity profile and skin friction coefficient when it is coupled with the constrained large eddy simulation methodology. The coupling highly promotes the capability of Vreman's model, offering a new promising approach to simulate high Reynolds number wall-bounded turbulent flows.  相似文献   

7.
This paper explores numerical errors that arise when large-eddy simulation (LES) is used with adaptive mesh refinement (AMR). LES and AMR combined can reduce the computational cost of turbulence simulations compared to direct numerical simulations, but are rarely used together due to complications that arise with the application of the turbulence closure model at different grid resolutions. Errors appear at grid refinement interfaces due to dependence of computed quantities on the LES filter width and insufficient smoothness of the solution at the grid scale. Here, explicit filtering and approximate reconstruction of the unfiltered velocity field are used to mitigate the effects of these errors in a simulation of decaying isotropic turbulence advected past a grid refinement interface. In particular, different explicit filter types and levels of reconstruction are tested. Explicit filtering with zero-level reconstruction is found to produce the best long-term convergence to a uniform grid solution with minimum perturbation at the interface. Higher levels of reconstruction yield better near-interface convergence. When explicit filtering is used, the explicit filter width transition is more important than the grid spacing transition in terms of solution convergence and interface perturbation. These results inform the use of LES on more complicated AMR grids.  相似文献   

8.
The resolution of a numerical scheme in both physical and Fourier spaces is one of the most important requirements to calculate turbulent flows. A conservative form of the interpolated differential operator (IDO-CF) scheme is a multi-moment Eulerian scheme in which point values and integrated average values are separately defined in one cell. Since the IDO-CF scheme using high-order interpolation functions is constructed with compact stencils, the boundary conditions are able to be treated as easy as the 2nd-order finite difference method (FDM). It is unique that the first-order spatial derivative of the point value is derived from the interpolation function with 4th-order accuracy and the volume averaged value is based on the exact finite volume formulation, so that the IDO-CF scheme has higher spectral resolution than conventional FDMs with 4th-order accuracy. The computational cost to calculate the first-order spatial derivative with non-uniform grid spacing is one-third of the 4th-order FDM. For a large-eddy simulation (LES), we use the coherent structure model (CSM) in which the model coefficient is locally obtained from a turbulent structure extracted from a second invariant of the velocity gradient tensor, and the model coefficient correctly satisfies asymptotic behaviors to walls.  相似文献   

9.
覃业宏  唐超  张春小  孟利军  钟建新 《物理学报》2015,64(1):16804-016804
本文利用分子动力学的方法和模拟退火技术从原子尺度分析研究了Si (100), Si (111)和Si (211)表面单原子层石墨烯的褶皱形貌及其演化特点. 研究表明, 分别置于Si晶体的三种不同原子表面的石墨烯都展现出原子尺度的褶皱形貌. 石墨烯与Si晶体表面原子的晶格失配是引起石墨烯褶皱的主要原因. 研究发现, Si晶体表面石墨烯的褶皱形貌强烈的依赖于退火温度. 石墨烯的褶皱形貌还将直接影响其在Si晶体表面的吸附稳定性. 这些研究结果有助于人们认识基于Si晶体衬底的石墨烯的结构形貌及其稳定性, 为石墨烯的进一步应用提供理论参考.  相似文献   

10.
In the last 50 years, the methodology of large-eddy simulation (LES) has been greatly developed, while lots of different subgridscale (SGS) models have appeared. However, the understanding of the procedure of SGS modeling is still not clear. The present contribution aims at reviewing the recent SGS models and, more importantly, expressing our recent understanding on the SGS modeling of LES in physical space. Taking the Kolmogorov equation for filtered quantities (KEF) as an example, it is argued that the KEF alone is not enough to be a closure method. Three physical laws are then introduced to complete this closure procedure and are expected to inspire the future researches of SGS modeling.  相似文献   

11.
The numerical modelling of alkali metal reacting dynamics in turbulent pulverised-coal combustion is discussed using tabulated sodium chemistry in large eddy simulation (LES). A lookup table is constructed from a detailed sodium chemistry mechanism including five sodium species, i.e. Na, NaO, NaO2, NaOH and Na2O2H2, and 24 elementary reactions. This sodium chemistry table contains four coordinates, i.e. the equivalence ratio, the mass fraction of the sodium element, the gas-phase temperature, and a progress variable. The table is first validated against the detailed sodium chemistry mechanism by zero-dimensional simulations. Then, LES of a turbulent pulverised-coal jet flame is performed and major coal-flame parameters compared against experiments. The chemical percolation devolatilisation (CPD) model and the partially stirred reactor (PaSR) model are employed to predict coal pyrolysis and gas-phase combustion, respectively. The response of the five sodium species in the pulverised-coal jet flame is subsequently examined. Finally, a systematic global sensitivity analysis of the sodium lookup table is performed and the accuracy of the proposed tabulated sodium chemistry approach has been calibrated.  相似文献   

12.
The subgrid-scale terms for different formulations of the energy equation are evaluated from a-priori tests using the direct numerical simulation (DNS) data of a compressible mixing layer at a moderate Mach number of M = 0.65. To extend the generality of the results, the simulations were performed with three different initial conditions for the velocity fields. To examine the impact of strong temperature variations on the subgrid scales, a non-isothermal mixing layer with lower to upper free-stream temperature ratio of 3 is also considered. For cold simulations, with equal free-stream temperatures, the total energy equation is shown to be the best choice in view of the accuracy and the subgrid-scale modelling requirements. For hot simulations, with the free-stream temperature ratio equal to 3, the total enthalpy equation is found to be the best formulation for the energy equation. Furthermore, it is shown that the subgrid-scale pressure dilatation term, which has been largely neglected so far, is of the same order of the subgrid-scale heat flux. Based on the present results, the contribution of the subgrid-scale pressure dilatation can be up to 46% of the total sugbrid-scale activity. Moreover, the time evolutions of the volume-average mean kinetic energy, turbulent kinetic energy, production, dissipation, and pressure dilatation terms are considered. Unlike the subgrid-scale pressure dilatation term, the volume-average pressure dilatation terms are negligible, and compressibility does not affect the large-scale evolutions of the mean and turbulent kinetic energies.  相似文献   

13.
14.
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.  相似文献   

15.
We present application of the hybrid two-level large-eddy simulation (TLS-LES) method, a multi-scale simulation model, to turbulent free-shear and wake flows at moderately high Reynolds number. The TLS-LES method combines the scale-separation-based two-level simulation (TLS) model with the spatial-filtering-based conventional large-eddy simulation (LES) model in an additive manner using a normalised blending function. The additive blending can be performed in a static or a dynamic manner. We demonstrate that the method, which has been originally developed for wall-bounded flows, can be used to simulate flows in complex configurations without requiring any further adjustments to the model. In this study, three canonical flows are simulated, which are representative of free-shear and wake flows. These cases include a temporally evolving mixing layer, flow past a circular cylinder in a uniform flow and flow past a finite-span airfoil placed in a uniform flow at three different angle of attacks. We analyse the role of static and dynamic blending functions, large-scale grid resolution and the effect of small scales on the instantaneous flow features and turbulence statistics. The results obtained from these cases demonstrate robustness, accuracy and consistency of the multi-scale TLS-LES method and show that the method is suitable for investigation of turbulent flows that encompass features such as massive separation, reattachment, transition to turbulence and unsteady wake, which are challenging to model numerically.  相似文献   

16.
A high-speed digital camera is used to record the saltation of three sand samples(diameter range:300–500,200–300 and100–125μm).This is followed by an overlapping particle tracking algorithm to reconstruct the saltating trajectory and the differential scheme to abstract the kinetic parameters of saltating grains.The velocity results confirm the propagating feature of saltation in maintaining near-face aeolian sand transport.Moreover,the acceleration of saltating sand grains was obtained directly from the reconstructed trajectory,and the results reveal that the climbing stage of the saltating trajectory represents an critical process of energy transfer while the sand grains travel through air.  相似文献   

17.
18.
We investigate the formation and dynamics of sand ripples under a turbulent water flow. Our experiments were conducted in an open flume with spherical glass beads between 100 and 500μm in diameter. The flow Reynolds number is of the order of 10 000 and the particle Reynolds number of the order of 1 to 10. We study the development of ripples by measuring their wavelength and amplitude in course of time and investigate the influence of the grain size and the flow properties. In particular, we demonstrate two different regimes according to the grain size. For fine grains, a slow coarsening process (i.e., a logarithmic increase of the wavelength and amplitude) takes place, while for coarser grains, this process occurs at a much faster rate (i.e., with a linear growth) and stops after a finite time. In the later case, a stable pattern is eventually observed. Besides, we carefully analyze the wavelength of ripples in the first stages of the instability as a function of the grain size and the shear velocity of the flow, and compare our results with other available experimental data and with theoretical predictions based on linear stability analyses.  相似文献   

19.
20.
射流抛光多相紊流流场的数值模拟   总被引:1,自引:2,他引:1       下载免费PDF全文
 理论分析了射流抛光的紊动冲击射流特点,构建了射流抛光的垂直冲击射流模型和斜冲击射流模型。根据射流抛光冲击射流的特点,比较各种流体模型后,采用RNG k-e 模型应用于射流抛光模型的计算。利用计算流体力学理论的二阶迎风格式对抛光模型方程离散,用SIMPLEC数值计算方法对射流抛光过程的紊动冲击射流和离散相磨粒分布进行数值模拟,得到了射流抛光过程的连续流场和离散相磨粒与水溶液的耦合流场,同时计算出了抛光液射流在工件壁面上的压力、速度、紊动强度、剪切力分布和磨粒体积质量分布,分析了垂直射流抛光模型和斜冲击射流抛光模型紊流流场的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号