首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conductive hybrids were prepared in a water/ethanol solution via the sol–gel process from an inorganic sol containing carboxyl groups and water‐borne conductive polyaniline (cPANI). The inorganic sol was prepared by the hydrolysis and condensation of methyltriethoxysilane with the condensed product of maleic anhydride and aminopropyltriethoxysilane as a catalyst, for which the carboxyl counterion along the cPANI backbone acted as an electrostatic‐interaction moiety. The existence of this electrostatic interaction could improve the compatibility of the two components and contribute to the homogeneous dispersion of cPANI in the silica phase. The electrostatic‐interaction hybrids displayed a conductivity percolation threshold as low as 1.1 wt % polyaniline in an emeraldine base, showing 2 orders of magnitude higher electrical conductivity than that without electrostatic interactions. The electrostatic‐interaction hybrids also showed good water resistance; the electrical conductivity with a cPANI loading of 16 wt % underwent a slight change after 14 days of soaking in water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1424–1431, 2007  相似文献   

2.
Water soluble conducting polyaniline with electrical conductivity of 10~(-1)-10~(-2) S/cm was prepared employingdopant induced water solubility technology. The water resistance of the conducting film was significantly improvedemploying sol-gel hybrids method, especially when the conductive polyaniline loading was below 30 wt%. The reason forthe improvement is that the conducting polyaniline chains are confined in a stable inorganic network.  相似文献   

3.
The electroactivity of polyaniline was extended to pH = 14 alkaline media by preparation of a novel electrostatic interaction conductive hybrid from water-borne conductive polyaniline and silica network containing carboxyl groups via sol–gel process. In addition, the obtained conductive polyaniline hybrid film displayed very low conductivity threshold percolation and demonstrated excellent stability upon cycling.  相似文献   

4.
Electroconductive and mechanically strength composite systems based on polyaniline and chitosan on the polyethylene porous substrate were obtained. A method to synthesize the conductive form of polyaniline in the solution of chitosan was developed. Molecular characteristics of chitosan in the solutions of acetic and hydrochloric acids and in their mixtures have been investigated. Optimal composition of solvent for the synthesis of polyaniline in a chitosan solution was determined. Electrical conductivity and mechanical characteristics of polyaniline/chitosan composite systems on porous polyethylene film were measured.  相似文献   

5.
Thermal transporting properties of electrically conductive polyaniline films were first investigated in wide range of temperatures above room temperature as organic thermoelectric materials. Thermal conductivities of various protonic acid-doped polyaniline films were measured by combination of a laser flash method and a differential scanning calorimeter in relation with electrical conductivity and a kind of dopant. The thermal conductivities thus measured are in the range of conventional organic polymers, indicating that the doped polyaniline films have extremely low thermal conductivities among electrically conductive materials, and have correlation with neither electrical conductivity, nor a kind of dopant. Consequently the polyaniline film, which shows very high electrical conductivity, has comparable thermoelectric figure-of-merit (ZT) with feasible inorganic thermoelectric materials such as iron silicide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A fast, simple and environmentally friendly new electrochemical method capable of enhancing the conductivity of a preformed polyaniline film has been found. Utilizing this method of electrochemical forcing pre-treatment at a certain effective voltage, a polyaniline solid matrix can be made more conductive. For example, the conductivity of a preformed polyaniline film (as thick as 10 μm) can be easily enhanced by about an order of magnitude within a pretreatment time of only ca. 5 min. The UV-Vis-NIR and ESR spectroscopic evidences indicated that the charge carriers in the polyaniline matrix are more delocalized after such electrochemical pretreatments. The results of CV studies indicated that the resultant polyaniline film has higher charge transport efficiency and a greater redox rate. Such phenomenon may be linked with a possible backbone conformational change, as induced by this novel electrochemical pretreatment, within the solid matrix ofpolyaniline film.  相似文献   

7.
Thermoelectric properties were investigated for the films of electrically conductive doped polyanilines. The thermoelectric performance, evaluated by thermoelectric figure-of-merit (ZT = T (S2 σ) / κ), of various protonic acid-doped polyaniline bulk films was found to depend on the electrical conductivity σ of the film. Thus, the higher the electrical conductivity, the higher the figure-of-merit is, because the thermal conductivity κ of polyaniline films does not depend on the electrical conductivity. Among the conductive bulk films of polyaniline, the highest figure-of-merit (ZT = 1 × 10−4) was observed for (±)-10-camphorsulfonic acid (CSA)-doped polyaniline in an emeraldine form (σ - 188 S cm−1) at room temperature. The multilayered film, composed of electrically insulating emeraldine base layers and electrically conducting CSA-doped emeraldine salt layers, exhibited 6 times higher ZT at 300 K than that of a bulk film of CAS-doped polyaniline, showing the highest ZT value of 1.1 × 10−2 at 423 K. Stretching of the CAS-doped polyaniline film also increased the figure-of-merit of doped polyaniline films along the direction of the stretching.  相似文献   

8.
聚苯胺/聚乙烯醇导电复合膜的制备及性质研究   总被引:13,自引:0,他引:13  
用较简单的化学氧化现场吸附聚合法(in-situpolymerization)制得了聚苯胺(PAn)/聚乙烯醇(PVA)导电复合膜.该膜具有较好的导电性和机械性能;其电导率可达5.8s/cm,拉伸强度达13MPa,断裂伸长率为110%左右.本文讨论了制备的各种条件对复合膜导电性能及力学性能的影响、稳定性及电化学活性;并采用循环伏安曲线、扫描电镜(SEM)、FTIR谱及元素分析对该复合膜的结构和性能进行了表征.  相似文献   

9.
A novel conductive dense membrane composed of polyaniline (PANI) and polysulfone (PSU) was prepared. To improve the solubility of PANI in N-methyl pyrrolidone (NMP) and consequently increase the conductivity of the eventual film, a tertiary amine (1,3-dimethyl-2-imidazolidinone, DMI) was added to the solvent as a co-solvent. Different PANI solution concentrations in NMP/DMI were used to make blend films via solution blending with PSU solution in NMP in different ratio’s of PANI/PSU. The effect of the PSU fraction on the properties of the membrane has been investigated. The electrical conductivity, doping degree, crystallinity, miscibility of the polymers and shape stability were investigated. It was observed that an increase in the PSU fraction causes a decrease in the conductivity as well as less film deformation after doping. The conductivity and shape stability of the blend film were optimized by a change in PANI concentration in the casting solution and a change in the PSU fraction. The best conductivity was achieved using 3% PANI solution in NMP/DMI and the minimum percentage of PSU, allowing good shape stability after doping, was found to be 40%.  相似文献   

10.
A conductivity equation based on the dual-disk microelectrode was derived. This electrode was used for in situ measurement of the conductivity of polyaniline. Some factors such as electrochemical potential, solution pH, scan rate and over-oxidation, which influence the conductivity of polyaniline, were conveniently controlled by this electrode. Experimental results proved that this electrode is very useful for measuring the relative conductivity in situ and studying the conducting mechanism of conductive polymers.  相似文献   

11.
利用羧基同导电聚苯胺(cPANI)主链上的氮原子的相互作用,制备了静电作用型水基导电聚苯胺/二氧化硅杂化材料,研究了杂化材料涂层对冷轧钢板的防腐性能.在3.5%NaCl中,含11 wt%cPANI的杂化材料涂层的腐蚀电位比纯二氧化硅涂层正移了200 mV,腐蚀电流从13.4μA降到2.4μA,下降了5倍,表明含cPANI的静电作用型杂化涂料使冷轧钢板表面变得更惰性.阻抗分析结果表明,cPANI含量为11 wt%的静电作用型杂化材料的阻抗比纯无机二氧化硅涂层大一个数量级,而且在碱性介质中浸泡10天后,杂化材料涂层的阻抗仍然保持稳定,而纯无机二氧化硅涂层的阻抗比初始值下降了一个数量级.杂化材料的形态分析结果表明,cPANI在静电作用型cPANI/二氧化硅杂化材料中的分布比在普通cPANI/二氧化硅杂化材料中更加均匀一致,从而使得它比普通的cPANI/二氧化硅杂化材料具有更好的防腐效果.  相似文献   

12.
乳液法制备掺杂聚苯胺的微观结构研究   总被引:8,自引:0,他引:8  
在众多的导电聚合物中,聚苯胺(PAn)被认为是最具应用前景的导电聚合物[1].本征态PAn的电导率约10-13S/cm数量级,呈电绝缘性.当用质子酸对PAn掺杂后,电导率达到5~10S/cm,可实现从绝缘体到导体的转变.  相似文献   

13.
Superhydrophobic surfaces were successfully prepared on Ti/Si substrates via the fabrication of conductive polyaniline (PANI) nanowire film. The PANI nanowire film was synthesized by electrodeposition of aniline into the pores of an anodic aluminum oxide (AAO) template on Ti/Si substrate followed by the removal of the template. The surface showed conductivity and superhydrophobicity, even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. Field emission scanning electron microscopy (FE-SEM) demonstrated that the binary geometric structures at micro- and nanometer scale bestowed the prerequisite roughness on the surfaces. The chemical surface modification made the PANI nanowire film superhydrophobic. The results demonstrated that the PANI nanowire film will have good potential applications in the preparation of conductive superhydrophobic surfaces.  相似文献   

14.
循环伏安法的电扫描方式对苯胺聚合产物形貌影响的观察   总被引:1,自引:0,他引:1  
在含有0.2 mol.L-1苯胺的0.5 mol.L-1H2SO4溶液中,以扫描速度50 mV.s-1,扫描电位为-0.1~0.9 V,采用循环伏安法(CV),在金属Ti基体上,通过控制扫描方式分别得到了颗粒状、纤维状及管-片状的苯胺聚合产物,分析了形成不同形貌聚苯胺的原因,并通过扫描电子显微镜(SEM)、循环伏安法和电化学阻抗谱(EIS)对不同形貌聚苯胺的结构和性能进行了表征.结果表明,不同形貌聚苯胺的形成是由于聚苯胺的成核及生长模式不同,而无论何种形貌的聚苯胺膜都具有很大的比表面积和良好的导电性能,其中,管-片状聚苯胺的膜层阻抗最小,导电性能最好.  相似文献   

15.
聚苯胺/金属纳米粒子复合物的制备及性能   总被引:3,自引:0,他引:3  
李新贵  孙晋  黄美荣 《化学进展》2007,19(5):787-795
基于国内外最新研究文献及本课题组研究工作,从发展历史、制备方法、多功能性方面系统综述了近年来发展起来的聚苯胺/金属纳米粒子复合物。在聚苯胺基体中引入金属纳米粒子的方法可归纳为3大类:原位复合法、直接共混法和层层自组装法。所形成的有机聚苯胺和无机金属杂化复合物不仅能保留各自原有的特异性能,而且二组分之间还存在着相互协同作用,能够极大地提升基体聚苯胺材料的性能,电导率最高可提高100倍,电氧化催化电流最高可提高10倍。分散在聚苯胺膜中的极少量铂微粒就能使不锈钢板的腐蚀电位稳定在钝化区域。聚苯胺/金属纳米粒子复合物所表现出的突出的固有电导性、优异的反应催化性和极强的金属防腐性,使其跻身于为数不多的新型高性能复合材料之列,显示出了诱人的应用前景。  相似文献   

16.
聚苯胺/顺丁橡胶复合导电膜的制备与性能   总被引:1,自引:4,他引:1  
采用溶液共混与浇铸法制备聚苯胺(PAn )/顺丁橡胶(BR)复合导电膜,确定了本征态聚苯胺以顺丁橡胶为弹性基体材料,甲苯为溶剂,过氧化二苯甲酰为交联剂,十二烷基苯磺酸作为共混分散剂和聚苯胺掺杂剂的复合膜制备工艺,并对复合膜的导电性能和形态结构进行了测试与表征.  相似文献   

17.
The precipitation polymerization of aniline in the presence of organic acids, including toluene‐4‐sulfonic acid, phenylphosphonic acid, 4‐aminophenylphosphonic acid, and acetophosphonic acid, led in one step to conductive polyaniline. The polyaniline showed very good affinity for water and was easily modified to be water‐soluble. In comparison with the widely studied postpolymerization of doped polyaniline, this reaction allowed reasonably good conductivity to be achieved at a lower acid/polyaniline ratio. Moreover, the easy in situ incorporation of the dopant into the polymer structure caused high stability of the created salt; that is, no dedoping was observed after it was washed with water, methanol, or other solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3562–3569, 2002  相似文献   

18.
A new type of highly conductive self-doping polyaniline, MPS-Pan, containing a sulfonic acid moiety covalently bonded to the polymer backbone through an electron-donating propylthio linkage has been successfully prepared via a novel concurrent reduction and substitution route. At a similar self-doping level, the resultant MPS-Pans displayed much higher conductivity than the corresponding sulfonated-polyaniline (S-Pan). Furthermore, for fully doped samples, contrary to the trend of decreasing conductivity with the sulfonation degree in S-Pan, the conductivity of MPS-Pan was found to increase with its substitution degree. These results agreed with the expectation that electron-deficient charge carriers (e.g. semiquinone radical cations) on acid-doped polyaniline chains will be better stabilized by the electron-donating alkylthio-substituent. Surprisingly, TG and XPS studies showed that MPS-Pan was thermally much more stable than S-Pan, with S-Pan started to lose its sulfonic acid dopant at 185 ℃, while MPS-Pan remained intact up to ca. 260 ℃.  相似文献   

19.
A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well‐defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g?1 and a high electric conductivity of 0.125 S cm?1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.  相似文献   

20.
聚苯胺/尼龙-11共混导电纤维的形态   总被引:5,自引:0,他引:5  
七十年代后期由于聚乙炔的发现而迅速产生了以共轭高分子为基础的导电高分子学科 ,聚苯胺 (PAn)也于 1 984年被MacDiarmid等重新开发[1 ] .相对于其它共轭高分子而言 ,聚苯胺原料易得、合成简单 ,具有较高的电导率和潜在的溶液、熔融加工可能性 ,同时还有良好的环境稳定性[2~ 5] .以导电高分子为导电剂的导电纤维有其独特的优点 .与颗粒状填料为导电剂不同 ,导电高分子在纺丝拉伸过程中会产生大分子取向 ,形成更多的导电通道 ,纤维的导电性能得到提高 ,导电阈值较小 .因此 ,研究导电组分在材料中的形态分布对研制导电共混复合…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号