首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the hydrolysis of fenuron in sodium hydroxide has been investigated spectrometrically in an aqueous medium and in cationic micelles of cetyltrimethylammonium bromide (CTAB) medium. The reaction follows first‐order kinetics with respect to [fenuron] in both the aqueous and micellar media. The rate of hydrolysis increases with the increase in [NaOH] in the lower concentration range but shows a leveling behavior at higher concentrations. The reaction followed the rate equation, 1/kobs = 1/k + 1/(kK[OH?]), where kobs is the observed rate constant, k is rate constant in aqueous medium, and k is the equilibrium constant for the formation of hydroxide addition product. The cationic CTAB micelles enhanced the rate of hydrolytic reaction. In both aqueous and micellar pseudophases, the hydrolysis of fenuron presumably occurs via an addition–elimination mechanism in which an intermediate hydroxide addition complex is formed. The added salts decrease the rate of reaction. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 638–644, 2007  相似文献   

2.
Kinetics of the hydrolysis of isoproturon by hydrochloric acid has been studied spectrophotometrically in the absence and the presence of anionic sodium lauryl sulfate (NaLS) micelles. The anionic micelle was found to increase the rate of reaction. The reaction followed first-order kinetics with respect to isoproturon and was linearly dependent upon [HCl]. In both aqueous and micellar pseudophases, the reaction was started with the protonation of the amino group of isoproturon followed by attack of water to yield phenylcarbamic acid and the corresponding amine, thus obeying the addition–elimination mechanism. The surfactant decreased the activation entropy. The binding constant in consistence with the rate constants was evaluated on the basis of pseudophase ion-exchange model. The added salts (NaCl and KCl) decreased the rate of reaction due to the exclusion of H+ from micellar surfaces.  相似文献   

3.
The spontaneous hydrolysis of phenyl chloroformate was studied in various anionic, nonionic, zwitterionic, and cationic aqueous micellar solutions, as well as in mixed anionic–nonionic micellar solutions. In all cases, an increase in the surfactant concentration results in a decrease in the reaction rate and micellar effects were quantitatively explained in terms of distribution of the substrate between water and micelles and the first‐order rate constants in the aqueous and micellar pseudophases. A comparison of the kinetic data in nonionic micellar solutions to those in anionic and zwiterionic micellar solutions makes clear that charge effects of micelles is not the only factor responsible for the variations in the reaction rate. Depletion of water in the interfacial region and its different characteristics as compared to bulk water, the presence of high ionic concentration in the Stern layer of ionic micelles, and differences in the stabilization of the initial state and the transition state by hydrophobic interactions with surfactant tails can also influence reactivity. The different deceleration of the reaction observed in the various micellar solutions studied was discussed by considering these factors. Synergism in mixed‐micellar solutions is shown through the kinetic data obtained in these media. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 445–451, 2002  相似文献   

4.
The rate of the perchloric acid hydrolysis of aqueous ethyl and butyl vinyl ethers at 25.0°C, in the presence of micellar aggregates [anionic, sodium dodecyl sulfate (SDS); cationic, cetyl trymethyl ammonium bromide (CTAB); and nonionic, polyoxyethylen? 23? dodecanol, (Brij 35)], has been studied. Negligible effects were observed in the cases of cationic and nonionic micelles. Anionic micelles produce an enhancement in the reaction velocity, and the rate constants go through maxima with increasing SDS concentration. These maxima disappear in the presence of excess sodium perchlorate. All these facts are interpreted quantitatively by means of the pseudo-phase ion-exchange model.  相似文献   

5.
The kinetics of alkaline hydrolysis of procaine under the pseudo–first‐order condition ([OH?] ? [procaine]) has been carried out. N,N‐Diethylaminoethanol and p‐aminobenzoate anion were obtained as the hydrolysis product. The rate of hydrolysis was found to be linearly dependent upon [NaOH]. The addition of cationic cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DDTAB) and tetradecyltrimethylammonium bromide, and anionic sodium dodecyl sulfate (SDS) micelles inhibited the rate of hydrolysis. The maximum inhibitive effect on the reaction rate was observed for SDS micelles, whereas among the cationic surfactants, CTAB inhibited most. The variation in the rate of hydrolysis of procaine in the micellar media is attributed to the orientation of a reactive molecule to the surfactant and the binding constant of procaine with micelles. The rate of hydrolysis of procaine is negligible in DDTAB micelles. The observed results in the presence of cationic micelles were treated on the basis of the pseudophase ion exchange model. The results obtained in the presence of anionic micelles were treated by the pseudophase model, and the various kinetic parameters were determined. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 1–9, 2013  相似文献   

6.
The alkaline hydrolysis of carsalam (2H-1,3-benzoxazine-2,4(3H)-dione), denoted as I, and its N-substituted derivatives i.e., N-methyl-1,3-benzoxazine-2,4-dione (II) and N-benzoyl-1,3-benzoxazine-2,4-dione (III) was studied spectrophotometrically at physiological temperature. The rate of hydrolysis was found to be independent on the substrate concentration. In case of I, the reaction was fractional order with respect to [OH(-)] while for II and III, reaction obeyed the first order kinetics. Effect of cationic surfactants with varying hydrophobic chains (cetyltrimethylammonium bromide, CTAB, tetradecyltrimethylammonium bromide, TTAB and dodecyltrimethylammonium bromide, DTAB) and with different head-group (cetyl pyridinium chloride, CPC) and anionic surfactant (sodium dodecyl sulfate, SDS) was also seen on the rate of alkaline hydrolysis of the carsalam and its derivatives. Cationic surfactants first catalyzed the rate of hydrolysis at lower concentrations followed by the inhibition at higher concentrations. The length of the alkyl chain had remarkable effect on the catalytic efficiency of the surfactants. Similarly N-substitution on substrate also increased the catalysis by micelles. The anionic surfactant SDS inhibited the rate of hydrolysis at all of the concentrations studied. The catalysis by cationic micelles followed by inhibition was treated in terms of the pseudophase ion-exchange model, while for the inhibition by SDS micelles the Menger-Portnoy model was used to fit the data. The effect of salts (NaCl, NaBr and (CH(3))(4)NBr) was also seen on the hydrolysis of II and it was found that all salts inhibited the rate of reaction. The inhibition follows the trend NaCl相似文献   

7.
The kinetics of the photolysis of substituted 1,2-dihydroquinolines (DHQ) in micellar solutions was studied by steady-state and flash photolysis. The photolysis mechanism depends dramatically on the location of DHQ molecules in micelles, which is governed by the surfactant nature. In micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS), where the DHQ molecules are located in the Stern layer, the intermediate species decay kinetics follows a first-order law. When DHQ is in neutral form (pH 4–12), the rate constant of the intermediate carbocation decay increases from 25 to 198 s?1 with an increasing concentration of DHQ in micelles. The positive micellar catalysis is caused by the acceleration of the final product formation with the DHQ molecule via proton abstraction from the intermediate cation. The formation of several types of intermediate species—carbocations in the aqueous phase and aminyl radicals in micelles—is observed in micellar solutions of the cationic surfactant cetyltrimethylammonium bromide (CTAB) due to the preferential location of DHQ molecules in the micellar core. The carbocation decays via a pseudofirst-order reaction with a rate constant close to that in the aqueous solution. The lifetime of the DHQ aminyl radicals in the micellar solutions is longer by several orders of magnitude than the lifetime observed for homogeneous solutions of hydrocarbons and alcohols.  相似文献   

8.
The alkaline hydrolysis of curcumin was studied in three types of micelles composed of the cationic surfactants cetyl trimethylammonium bromide (CTAB) and dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS). At pH 13, curcumin undergoes rapid degradation by alkaline hydrolysis in the SDS micellar solution. In contrast, alkaline hydrolysis of curcumin is greatly suppressed in the presence of either CTAB or DTAB micelles, with a yield of suppression close to 90%. The results from fluorescence spectroscopic studies reveal that while curcumin remains encapsulated in CTAB and DTAB micelles at pH 13, curcumin is dissociated from the SDS micelles to the aqueous phase at this pH. The absence of encapsulation and stabilization in the SDS micellar solution results in rapid hydrolysis of curcumin.  相似文献   

9.
 The kinetics and thermodynamics of the basic hydrolysis of crystal violet (CV) in mixed reverse micelles formed with anionic surfactant AOT and nonionic surfactants have been investigated. It was found that the mixed reverse micelles had inhibitory effects on CV hydrolysis compared with the normal aqueous solution, and the equilibrium constant K of the reaction in mixed reverse micellar systems is smaller than that in pure water. The influence of water content and surfactant composition in reverse micelles on the second-order rate constant k 1 of the positive reaction, on the first-order rate constant k -1 of the reverse reaction, as well as on the equilibrium constant K of the reaction has been studied, and the results obtained were interpreted in terms of the nature of surfactants and the properties of microenvironment where the reaction took place. Received: 24 October 1997 Accepted: 18 March 1998  相似文献   

10.
The kinetics of micellar catalyzed hydrolysis of mono-2,3-dichloroaniline phosphate in the presence of different surfactants has been studied at 303?K. The rate of reaction has been found to be first order with respect to both [substrate] and [HCl]. The cationic micelles of cetylpyridinium chloride (CPC), anionic micelles of di-octyl sodium sulphosuccinate (AOT), and non-ionic micelles of polyoxyethylene sorbitan monooleate (Tween 80) enhanced the rate of reaction to a maximum value and after that the increase in concentration of surfactant decreased the reaction rate. The applicability of different kinetic models has been tested to explain the observed micellar effects. The various thermodynamic activation parameters (Ea, ΔH, ΔS, ΔG) have been evaluated. The added salts viz. KCl, KNO3, K2SO4 enhanced the rate of reaction in the presence of CPC, AOT, and Tween 80 micelles. The kinetic parameters were determined from the rate (surfactant) profile and a suitable mechanism consistent with the experimental finding has been proposed.  相似文献   

11.
Kinetics of the condensation reaction of ninhydrin and the [Ni(II)–histidine]+ complex has been studied spectrophotometrically at pH 5.0, both in aqueous and aqueous–cationic micelles of cetyltrimethylammonium bromide (CTAB). The same product was obtained in both the media. The results obtained in the micellar medium are treated quantitatively in terms of the kinetic pseudo‐phase and Piszkiewicz models. The rate constants, binding constants with the micelles, and the index of cooperativity have been evaluated. On the basis of observed data a possible mechanism has been proposed. The same product was obtained in nonionic micelles of TX‐100, but the studies were hampered due to the appearance of turbidity, whereas anionic micelles of sodium dodecyl sulphate did not catalyze the reaction. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 47–54, 1999  相似文献   

12.
The influence of surfactants (anionic and cationic) on the reactivity of the redox couple cerium(IV) and D-glucose was examined spectrophotometerically. Various kinetic parameters have been determined in the absence and presence of surfactants. The kinetics were followed by monitoring the disappearance of the absorbance of cerium(IV) at 385 nm. The reaction obeyed first-order kinetics with respect to [D-glucose] in both media. No effect of anionic micelles of sodium dodecyl sulfate (SDS) was observed due to electrostatic repulsion between the negative head group of SDS and reactive species of cerium(IV) (Ce(SO4) 3 2− ). A twofold increase in the oxidation rate was observed in the presence of cationic micelles of cetyltrimethylammonium bromide (CTAB). The observed catalytic role has been analyzed in terms of the Menger–Portnoy model. The effects of various inorganic salts (Na2SO4, NaNO3 and NaCl) were also studied in micellar media.  相似文献   

13.
The effect of micelles of different surfactants (cationic, anionic, and neutral) on the kinetics of the glucose oxidase-catalyzed reduction of ferrocenium cations RFc+ (R=H, Bun) byd-glucose was studied by spectrophotometry. In micellar media of Triton X-100 and sodium dodecyl sulfate (SDS), the Michaelis dependence of the reaction rate on the HFc+ concentration is observed, while this dependence has an extreme character in cationic micelles of cetyltrimethylammonium bromide (CTAB). The nature and concentration of surfactants of all types have a slight effect on the rate of reduction of HFc+. The level of enzymatic activity is approximately equal in the case of Triton X-100 and CTAB and is considerably lower in the SDS micelles. On going from HFc+ to BunFc+, the reaction rate is maximum in the cationic CTAB micelles, the anionic SDS micelles exhibit almost no activity, and the activity has an intermediate value in neutral micelles of Triton X-100. The conditions are presented under which the micellar medium controls the catalytic activity of glucose oxidase with respect to ferrocenium cations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1795–1801, October, 1997.  相似文献   

14.
Catalysis of oxidation of glycolic acid by N-bromophthalimide by micelles of cetyltrimethylammonium bromide (CTAB) at 318 K was investigated. The observed value of critical micelle concentration of CTAB in the presence of other components was lower than those reported in the literature. The oxidation reaction was strongly catalyzed by cationic micelles of CTAB. The reaction rate increased with CTAB concentration until the steady state was achieved. The reaction kinetics corresponded to first, fractional and inverse fiactional orders with respect to changes of concentration of reaction components. Effects of solvent, phthalimide, mercuric acetate, and potassium chloride on the reaction kinetics were also studied. The micelle-catalyzed oxidation reaction was shown to fit Arrhenius equation. The experimental data were rationalized in terms of Menger-Portnoy model considering a distribution of the reactants between the micellar and aqueous phases.  相似文献   

15.
The micellar effect of surfactants of various types on the rate of the reaction between methyl violet and hydroxide ion is studied. The absorption spectra show that the cation of methyl violet is bound by micelles of all types at proper concentrations of surfactants. The observed rate constant in micellar systems containing nonionic Brij-35, zwitterionic 3-(dimethyldodecylammonio)-propanesulfonate, cationic cetyltrimethylammonium bromide and hydroxide surfactants is higher, whereas in solutions of the anionic surfactant sodium dodecylsulfate is lower than that one in the surfactant-free system. Piszkiewicz's, Berezin's, and pseudophase ion-exchange models of the kinetic micellar effect are used for the treatment of the dependences of the above-mentioned constants on the surfactant concentration. The values of the corresponding kinetic parameters are compared and discussed. The influence of nonionic, zwitterionic, and anionic micelles on the reaction rate is discussed on the basis of medium and concentration kinetic effects. The character of the cationic micelles effect is somewhat paradoxical. Although the observed pseudo–first-order reaction rate constant substantially increases in the presence of such micelles, the second order-rate constant in these micelles is lower than the corresponding value in surfactant-free aqueous solution. As a possible explanation, the decrease in the reactivity of the HO ions is proposed, owing to their electrostatic association with the cationic headgroups (“diverting effect”).  相似文献   

16.
The effects of a sodium dodecyl sulfate, SDS, micellar solution on the coupling rates of two arenediazonium ions, ArN(2)(+), with the hydrophobic 1-naphthylamine, 1NA and N-(1-naphthyl) ethylenediamine, NED, coupling agents and with the hydrophilic Na salt of 2-naphthol-6-sulfonic acid, 2N6S, have been studied. First, we explored the micellar effects on the thermal decomposition of the arenediazonium ions. The observed rate constants are slightly depressed or increased, depending on the nature of ArN(2)(+), compared to those in pure water upon increasing [SDS]. Estimations of the corresponding association constant to the micelle indicate that a significant fraction of the arenediazonium ions are incorporated into the micelles even at low surfactant concentrations. The sulfonate group in 2N6S prevents its incorporation into the micellar aggregate due to the electrostatic barrier imposed by the micelles and, in consequence, the coupling reaction is inhibited. In contrast, when employing the naphthylamine derivatives, the observed rate constant increase rapidly up to a maximum at [SDS]相似文献   

17.
The kinetics and mechanism of the oxidation of lactose by N-bromophthalimide in the absence and presence of cetyltrimethylammonium bromide and sodium dodecyl sulfate micelles was investigated in the presence of sulfuric acid medium. Under pseudo-first-order conditions reaction rate agreed with a first-, fractional- and negative fractional-order kinetics in N-bromophthalimide, lactose and sulfuric acid, respectively. In the presence of additives, the critical micellar concentration values were lower than those given in the literature. The catalytic role of cationic micelles was explained by the Berezin model. The anionic micelles showed slightly inhibitory effect. The influence of salts, phthalimide and mercuric acetate on the reaction rate was also studied. Using the kinetic data, the rate constant, binding constants, and corresponding activation parameters were evaluated. A possible reaction mechanism, which is based on the kinetic results and the product analysis, is proposed.  相似文献   

18.
Kinetics of the reduction of 3-chloroacetophenone (CAF) with sodium borohydride (NaBH(4)) were followed by UV-vis spectroscopy at 27.0 degrees C in different reverse micellar media, toluene/BHDC/water and toluene/AOT/water, and compared with results in an isooctane/AOT/water reverse micellar system. AOT is sodium 1,4-bis-2-ethylhexylsulfosuccinate, and BHDC is benzyl-n-hexadecyl dimethylammonium chloride. The kinetic profiles were investigated as a function of variables such as surfactant and NaBH(4) concentration and the amount of water dispersed in the reverse micelles, W(0) = [H(2)O]/[surfactant]. In all cases, the first-order rate constant, k(obs), increases with the concentration of surfactant as a consequence of incorporating the substrate into the interface of the reverse micelles where the reaction takes place. The reaction is faster at the cationic interface than at the anionic one probably because the negative ion BH(4)(-) is part of the cationic interface. The effect of the external solvent on the reaction shows that reduction is favored in the isooctane/AOT/water reverse micellar system than that with an aromatic solvent. This is probably due to BH(4)(-) being more in the water pool of the toluene/AOT/water reverse micellar system. The kinetic profile upon water addition depends largely on the type of interface. In the BHDC system, k(obs) increases with W(0) in the whole range studied while in AOT the kinetic profile has a maximum at W(0) approximately 5, probably reflecting the fact that BH(4)(-) is part of the cationic interface while, in the anionic one, there is a strong interaction between water and the polar headgroup of AOT below W(0) = 5 and, above that, BH(4)(-) is repelled from the interface once the water pool has formed. Application of a kinetic model based on the pseudophase formalism, which considers the distribution of the ketone between the continuous medium and the interface and assumes that reaction takes place only at the interface, has enabled us to estimate rate constants at the interface of the reverse micellar systems. At W(0) < 10, it was considered that NaBH(4) is wholly at the interface and, at W(0) >/= 10, where there are free water molecules, also the partitioning between the interface and the water pool was taken into account. The results were used to evaluate CAF and NaBH(4) distribution constants between the different pseudophases as well as the second-order reaction rate constant of the reduction reaction in the micellar interface.  相似文献   

19.
利用紫外光谱方法测定了维生素A及其乙酸酯在不同胶束水溶液中的衰变速率常数和衰变活化参数. 数据显示, 维生素A及其乙酸酯在阴离子胶束溶液SDS中的衰变速度要远大于在阳离子胶束溶液CTAB和中性胶束溶液TX-100中的衰变速度. 机理分析表明, 维生素A及其乙酸酯在水溶液中的衰变是经过先质子化, 再脱去一分子水或乙酸生成碳正离子中间体, 碳正离子再脱去质子, 经重排后得到最终产物脱水维生素A.  相似文献   

20.
The kinetics of the reaction between malachite green (MG) and sodium hydroxide (MG fading) was studied using a spectrophotometric method in the presence of two cationic surfactants, cetyl-benzyl-dimethyl-ammonium chloride (CBDAC) and hexadecyl-trimethylammonium bromide (HTAB) and one anionic surfactant, sodium dodecyl sulphate (SDS) at concentrations below and above critical micellar concentrations. The cationic surfactants have a catalytic effect, while the anionic surfactant has an inhibitory effect on the reaction. A kinetic model describing the influence of surfactant on reaction rate was developed. The results are discussed on the basis of electrostatic and hydrophobic interactions between the kinetic micelles and malachite green.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号