首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a widely tunable low-threshold chi(3) optical parametric oscillator. The oscillator cavity is formed by butt coupling dichroic mirrors to either end of a highly nonlinear index-guiding photonic crystal fiber. This yields a singly resonant Fabry-Perot oscillator with a high feedback fraction for the resonant parametric sideband. The tuning range of the output parametric sideband stretches from 23 to 164 THz above the pump frequency. The threshold power of the oscillator is only 15 W.  相似文献   

2.
The phase-matching condition in a fiber is discussed. A balance among the different orders of fiber dispersion can be found to achieve a widely tuning modulation instability gain for pumping around the normal dispersion regime. Three coupled nonlinear wave equations are used to simulate the femtosecond fiber optical parametric oscillator. The numerical results show that, through appropriate choice of dispersion, femtosecond pulses with a 180-nm tunable range can be generated when pump wavelength near a fiber’s zero-dispersion wavelength is tuned only 7 nm. Further tuning is limited by the walk-off between the pump and the signal pulses.  相似文献   

3.
Burr KC  Tang CL  Arbore MA  Fejer MM 《Optics letters》1997,22(19):1458-1460
We describe a high-repetition-rate femtosecond optical parametric oscillator (OPO) that was broadly tunable in the mid infrared. The all-solid-state-pumped OPO was based on quasi-phase matching in periodically poled lithium niobate. The idler was tunable from approximately 1.7 mum to beyond 5.4 mum, with maximum average power levels greater than 200 mW and more than 20 mW of average power at 5.4 mum. We used interferometric autocorrelation to characterize the mid-infrared idler pulses, which typically had durations of 125 fs. This OPO had a pumping threshold as low as 65 mW of average pump power, a maximum conversion efficiency of >35% into the near-infrared signal, a slope efficiency for the signal of approximately 60%, and a maximum pump depletion of more than 85%.  相似文献   

4.
Widely tunable optical parametric generation in a photonic crystal fiber   总被引:1,自引:0,他引:1  
We report on the observation of widely tunable optical parametric generation in a photonic crystal fiber. The frequency shift of the generated sidebands that arise from modulational instability is strongly dependent on the detuning of the pump from the fiber's zero-dispersion wavelength. We are able to demonstrate experimentally more than 450 nm of sideband tunability as we tune the pump wavelength over 10 nm. Excellent agreement has been found between the experimentally measured and theoretically predicted shifts.  相似文献   

5.
We present results from what we believe is the first reported example of an optical parametric oscillator based on periodically poled RbTiOAsO(4). The oscillator is pumped by a femtosecond self-mode-locked Ti:sapphire laser and, with a single-grating 2-mm-long crystal and one mirror set, a combination of pump and cavity-length tuning provided wavelength coverage from 1060 to 1225nm (signal) and 2.67 to 4.5 microm (idler). Average output powers were as much as 120mW in the signal and 105mW in the idler and interferometric autocorrelations recorded at signal and idler wavelengths of 1.1 and 3.26 microm, respectively, imply pulse durations of 125 and 115fs, respectively.  相似文献   

6.
Supercontinuum (SC) generation in photonic crystal fiber (PCF) is demonstrated using an amplified femtosecond stretched pulses. The stretched pulse is obtained from a mode-locked Erbium-doped fiber laser and operates at 1564 nm with a repetition rate of 8.27 MHz and a pulse width of 340 fs. Using a 50 m long PCF, broad SC spectra are observed starting from 1220 and 1050 nm for the corresponding 5.1 and 177 kW pump and spanning a wavelength region of more than 1750 nm. At a maximum peak pump power of 177 kW, flat SC which extends over bandwidths of 660 and 486 nm are obtained using 50 and 100 m piece of PCF respectively. However, the output power level is higher for the 100 m PCF especially at longer wavelength region.  相似文献   

7.
石俊凯  柴路  赵晓薇  刘博文  胡明列  栗岩锋  王清月 《物理学报》2015,64(18):184210-184210
基于单根10 m大模场面积保偏光子晶体光纤, 搭建了带有色散图的放大自相似振荡器; 通过仔细调节腔内色散量的大小以及位于色散补偿端的端镜前的狭缝位置和大小, 实现了稳定的锁模运转, 获得了抛物线形脉冲输出. 输出脉冲的重复频率为8.6 MHz, 脉冲宽度为6.2 ps, 光谱宽度为3.84 nm, 平均功率820 mW, 对应单脉冲能量95 nJ. 这是第一次在自相似振荡器中直接获得重复频率在10 MHz 以下的脉冲输出, 95 nJ也是目前自相似振荡器直接输出的最高脉冲能量. 通过数值模拟证实了在第一个光栅的零级反射处和狭缝滤波后可以分别实现抛物线型脉冲和高斯脉冲的两种锁模脉冲输出.  相似文献   

8.
We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15.5 MHz repetition rate, resulting in 710 nJ of pulse energy. The output pulses are dechirped outside the cavity from 7 ps to nearly transform-limited duration of 300 fs, leading to pulse peak powers as high as 1.9 MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber.  相似文献   

9.
Phase-matched parametric four-wave mixing in higher-order guided modes of a photonic crystal fiber is shown to result in an efficient decay of 40-fs 800-nm Ti:sapphire laser pump pulses into an anti-Stokes signal with a central wavelength around 590-600 nm and a Stokes signal centered at 1.25 microm. The photonic crystal fiber is designed in such a way as to minimize the group-velocity dispersion at the pump wavelength, phase match the parametric four-wave-mixing process, and reduce the group delay between the pump and the anti-Stokes pulses. The duration of the anti-Stokes pulse under these conditions, as shown by cross-correlation frequency-resolved optical gating measurements, is less than 200 fs.  相似文献   

10.
We report the development of a compact, tunable synchronously pumped photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). The oscillator is pumped using a gain-switched laser diode producing 220?ps pulses around 1062?nm, amplified in a ytterbium doped amplifier to peak powers of 3.5?kW. The FOPO produces anti-Stokes pulses at wavelengths between 757 and 773?nm, with durations of 150?ps at average output powers exceeding 290?mW. The output slope efficiency of the device varies with output wavelength from 1.9 to 6.0%.  相似文献   

11.
A tunable multiwavelength Brillouin-erbium fiber laser (MW-BEFL) using a twin-core fiber (TCF) coupler is proposed and demonstrated. The TCF coupler is formed by splicing a section of TCF between two single-mode fibers. By simply applying bending curvature on the TCF coupler, the peak net gain is shifted close to the Brillouin pump (BP), which has advantage for suppressing self-lasing cavity modes with low-BP-power injection. In this work, the dependency of the Stokes signals tuning range on the free spectral range (FSR) of TCF coupler is studied. It is also found that the tuning range of MW-BEFL can exceed the FSR of TCF coupler by adopting proper BP power and 980-nm pump power. Up to 40 nm tuning range of MW-BEFL in the absence of self-lasing cavity modes is achieved.  相似文献   

12.
The techniques of coupled-cavity modelocking and self-modelocking in which intensity-induced nonlinear effects are exploited have been reviewed for broad-band gain media. Particular emphases have been placed upon the archetypical colour-centre and titanium-sapphire laser configurations in which these techniques were first demonstrated and subsequent refinements are set in context. A femtosecond optical parametric oscillator pumped by a self-mode-locked titanium-sapphire laser has also been described as an exemplar of a practical means of extending the source tunability into the mid-infrared spectral region.  相似文献   

13.
李永忠 《物理学报》2008,57(1):205-210
This paper theoretically studies the double-pumped fibre-optical parametric amplifiers (FOPAs) in photonic crystal fibres. Two distinct working regimes of FOPAs are researched, which depend on the dispersion at the central wavelength of the two pumps. Extremely broad tuning range can be obtained when the central pump wavelength is in the normal dispersion regime and is insensitive to the wavelength separation between the two pumps, while the tuning range is narrow in the anomalous dispersion regime and can be significantly enhanced by increasing the wavelength separation. Impacts of higher-order dispersions and temporal walk-off on the gain spectra are also discussed.  相似文献   

14.
This paper theoretically studies the double-pumped fibre-optical parametric amplifiers (FOPAs) in photonic crystal fibres. Two distinct working regimes of FOPAs are researched, which depend on the dispersion at the central wavelength of the two pumps. Extremely broad tuning range can be obtained when the central pump wavelength is in the normal dispersion regime and is insensitive to the wavelength separation between the two pumps, while the tuning range is narrow in the anomalous dispersion regime and can be significantly enhanced by increasing the wavelength separation. Impacts of higher-order dispersions and temporal walk-off on the gain spectra are also discussed.  相似文献   

15.
We report a high-repetition-rate (1-10-kHz) optical parametric oscillator (OPO) based on noncritically phase-matched ZnGeP2 (ZGP). The pump source was an OPO based on periodically pole lithium niobate that was pumped in turn by a Q-switched diode-pumped 1-microm Nd:YAG laser. The ZGP OPO yielded continuously tunable output from 3.7 to 10.2 microm by tuning of the pump wavelength from 2.3 to 3.7 microm. At the optimal pump focusing, the minimum ZGP OPO threshold achieved was 2 microJ, which is to our knowledge the lowest ever reported for a singly resonant OPO. The output energy in the 6-8-microm range was > 20 microJ, and the quantum efficiency of converting 1-microm radiation to the mid IR exceeded 10%.  相似文献   

16.
Xu YQ  Mak KF  Murdoch SG 《Optics letters》2011,36(11):1966-1968
We present an all-fiber high average power fiber optical parametric oscillator based on standard telecommunications dispersion-shifted fiber. The output of the oscillator is continuously tunable out to ±28 THz from the pump wavelength. The average power of the oscillator's output is in excess of 1.9?W in each sideband out to ±25 THz detuning. Between 5 and 14 THz detuning, the average power of the Stokes output is in excess of 3.8 W.  相似文献   

17.
We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a four-mirror ring cavity. By tuning of the fiber-laser wavelength over 33 nm through an intracavity acousto-optic tunable filter, the OPO idler wavelength is tuned from 3160 to 3500 nm in 330 micros, corresponding to an idler frequency-tuning speed of 28 THz/ms. At a fiber-laser power of 6.6 W at 1074 nm, the singly resonant OPO generates 1.13-W cw idler radiation at 3200 nm.  相似文献   

18.
Wavelength tunable high energy ultrashort laser pulses are generated from a large-mode-area photonic crystal fiber in anomalous dispersion (AD) regime. A simplified laser cavity design with one fine polished facet of the fiber as a cavity mirror is used. The intra-cavity dispersion compensation is achieved by a grating pair, the spatial dispersed light from which also have optical spectrum filtering effects combined with the limited aperture of the fiber core. The laser system is able to generate ultrashort pulses ranging from 494 fs (with 56 nJ pulse energy) to 1.24 ps (with 49 nJ pulse energy) at 55 MHz repetition rate. The filtering mechanism benefits the generation of high energy pulses with narrowing pulse duration in AD regime. An undulation in frequency and time domain is also observed with the increase of the pump power. Furthermore, this laser system is directly used as seed for supercontinuum generation.  相似文献   

19.
In this paper, we investigate the gain spectra of fiber optical parametric amplifiers (FOPAs) consisting of dispersion-flattened fibers (DFFs) with different dispersion curves comparatively by means of the dispersion curve model of the DFFs. It is demonstrated that the broader gain spectrum of FOPAs can be achieved if the dispersion curve is lower and more flattened. Based on the preceding analyses, we propose to constitute FOPAs by using index-guiding photonic crystal fiber (PCF) with an anticipated ultra-flattened dispersion and ultra-low dispersion slope. The as-proposed PCF had different air-holes in the cladding rings. In total, four parameters of the PCF are optimized by using genetic algorithm. PACS 42.81.-i; 42.65.Hw; 42.65.Yj  相似文献   

20.
We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 rim, eight sam- ples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimen- tally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号