首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We carried out molecular-scale and in situ investigations of the initial growth process of polystyrene particles in soap-free polymerization, where a cationic initiator, V-50, was used to make the formed particles transfer onto the mica plate in sampling, using an atomic force microscope. It was found that the particles coagulated soon after the nucleation process. Such coagulation was estimated from a macroscopic research, however; microscopic evidence was not enough. This study verifies it from a microscopic view.  相似文献   

2.
Metal-containing amorphous hydrogenated carbon films are of high interest for industrial applications because of their excellent frictional properties, their high abrasive wear resistance and their electrical conductivity, which can be adjusted in a range of 10–12 orders of magnitude. In order to get insight into the mechanical and electrical properties it is necessary to study the nanostructure of the films. The structure consists of small nanometer sized metallic or carbidic particles, which are embedded in a three dimensional amorphous hydrogen-carbon matrix. Anomalous small angle X-ray scattering (ASAXS) and scanning tunneling microscopy (STM) have been used to determine size- and distance-distributions of the particles as a function of metal content. Problems and restrictions of both methods will be discussed. Furthermore the capabilities of scanning probe techniques to distinguish different materials on a nanometer scale (material contrast) have been studied employing barrier height imaging (dI/dz) and friction force microscopy.Dedicated to Professor Dr. rer. nat. Dr. h. c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

3.
To clarify the growth mechanism of polystyrene (PSL) particles in the soap-free polymerization, characteristics of not only particles but also polymeric materials floating in the bulk were investigated on the molecular scale by using atomic force microscope (AFM), where a cationic initiator V-50 is used to make the formed polymeric materials transfer on the mica plate in sampling. Our main attention here is to know the reason why the particle size increases with increasing initiator concentration in the production of PSL particles. The following are found. (1) As far as the initiators and monomers remain in the bulk solution, the polymeric materials are born in the bulk continuously, because of the slow decomposition rate of initiators. (2) The growth of particles at the early stage of t(r) > or = 0.75 h is considered to be attributable mainly to the particle swelling by absorbing monomers from the bulk. The rapid growth at the intermediate stage is due to the deposition of polymeric materials in the bulk on the particle surface and their simultaneous swelling by monomers in the bulk. (3) The reason why the particle size increases with increasing concentration of initiator is that the growth process is controlled by the deposition rate of polymeric materials in the bulk whose amount increases with the initiator concentration. (4) The particle size and the smoothness of particle surface depend on the relative concentration of initiators and monomers remained.  相似文献   

4.
Adhesive materials used by many arthropods for biological functions incorporate sticky substances and a supporting material that operate synergistically by exploiting substrate attachment and energy dissipation. While there has been much focus on the composition and properties of the sticky glues of these bio-composites, less attention has been given to the materials that support them. In particular, as these materials are primarily responsible for dissipation during adhesive pull-off, little is known of the structures that give rise to functionality, especially at the nano-scale. In this study we used tapping mode atomic force microscopy (TM-AFM) to analyze unstretched and stretched glowworm (Arachnocampa tasmaniensis) capture threads and revealed nano-scale features corresponding to variation in surface structure and elastic modulus near the surface of the silk. Phase images demonstrated a high resolution of viscoelastic variation and revealed mostly globular and elongated features in the material. Increased vertical orientation of 11–15 nm wide fibrillar features was observed in stretched threads. Fast Fourier transform analysis of phase images confirmed these results. Relative viscoelastic properties were also highly variable at inter- and intra-individual levels. Results of this study demonstrate the practical usefulness of TM-AFM, especially phase angle imaging, in investigating the nano-scale structures that give rise to macro-scale function of soft and highly heterogeneous materials of both natural and synthetic origins.  相似文献   

5.
We report on a novel technique to nucleate nanometer-sized droplets on a solid substrate and to image them with minimal perturbation by noncontact atomic force microscopy (NC-AFM). The drop size can be accurately controlled, thus permitting hysteresis measurements. We have studied the nanoscale wettability of several methyl-terminated substrates prepared by the self-assembly of organic molecules. These substrates are alkyltrichlorosilanes on silica, alkylthiols on gold, alkyl chains on hydrogen-terminated silicon, and crystalline hexatriacontane chains on silica. For each of these systems, we report a deviation of the wetting contact angle from the macroscopic value, and we discuss this effect in term of mesoscale surface heterogeneity and long-range solid-liquid interactions.  相似文献   

6.
7.
We investigated the chain ordering of the lipid bilayer of Stratum corneum (SC) using an electron paramagnetic resonance (EPR) spin probe method in conjunction with slow-tumbling simulation. The ordering of SC lipids was evaluated by analysis of the signals of 5-doxylstearic acid (5-DSA) spin probe incorporated into the lamellar lipids. The result obtained with the conventional method of calculating the order parameter using hyperfine values was 0.80. The value of the order parameter obtained by spectral simulation was 0.73. It was found that the conventional method of calculating the chain ordering using hyperfine values could not differentiate subtle EPR spectral changes. However, EPR slow-tumbling simulation can differentiate such subtle spectral changes. Thus, the present EPR investigation suggests that simulation provides more detail about the structure of the lipid bilayer than the conventional method.  相似文献   

8.
[structure: see text] Tetrahedrally shaped nanoscale molecules 18-20 were synthesized from the corresponding tetraiodide by a series of Sonogashira coupling reactions. Three of the sulfur-containing termini are intended for eventual binding to a gold-coated conventional AFM tip, while the fourth terminus scans the sample. AFM images of 19 demonstrate that the molecule is sufficiently large and rigid to be imaged by a conventional AFM tip.  相似文献   

9.
Understanding the formation process and the spatial distribution of nanoparticle (NP) clusters on amyloid fibrils is an essential step for the development of NP-based methods to inhibit aggregation of amyloidal proteins or reverse the assembling trend of the proto-fibrillary complexes that prompts pathogenesis of neuro degeneration. For this, a detailed structural determination of the diverse hybrid assemblies that are forming is needed, which can be achieved by advanced X-ray scattering techniques. Using a combined solution small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) approach, this study investigates the intrinsic trends of the interaction between lysozyme amyloid fibrils (LAFs) and Fe3O4 NPs before and after fibrillization at nanometer resolution. AFM images reveal that the number of NP clusters interacting with the lysozyme fibers does not increase significantly with NP volume concentration, suggesting a saturation in NP aggregation on the fibrillary surface. The data indicate that the number of non-adsorbed Fe3O4 NPs is highly dependent on the timing of NP infusion within the synthesis process. SAXS data yield access to the spatial distribution, aggregation manner and density of NP clusters on the fibrillary surfaces. Employing modern data analysis approaches, the shape and internal structural morphology of the so formed nanocomposites are revealed. The combined experimental approach suggests that while Fe3O4 NPs infusion does not prevent the fibril-formation, the variation of NP concentration and size at different stages of the fibrillization process can impose a pronounced impact on the superficial and internal structural morphologies of these nanocomposites. These findings may be applicable in devising advanced therapeutic treatments for neurodegenerative diseases and designing novel bio-inorganic magnetic devices. Our results further demonstrate that modern X-ray methods give access to the structure of—and insight into the formation process of—biological–inorganic hybrid structures in solution.  相似文献   

10.
Aqueous gel-like solutions of N-acyl-L-aspartic acids (C(n)Asp, n=14, 16, 18) and N-dodecanoyl-beta-alanine (C(12)Ala) were prepared at pH 5-6 at room temperature. Structures of supramolecular assemblies in the solutions were investigated by atomic force microscopy (AFM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS). The cross-sectional radii, 22-30 ?, of helical, fibrous assemblies were obtained from analysis of SANS for 1% gel-like C(n)Asp solutions. Three Bragg spacings were observed in a SANS spectrum for a 6% C(16)Asp solution. C(n)Asp molecules are associated into the unit chain of a helical bilayer strand with a diameter of 50-60 ?. Unit chains where linear bilayers twist form a double strand with helical sense of approximately 650-? pitch. It was confirmed from AFM images that cylindrical fibers in a gel-like C(12)Ala solution had a circular cross-section. The SAXS spectrum showed characteristic Bragg spacings. Cylindrical C(12)Ala fibers consist of multilamellar layers of period approximately 34-?. The fibers are laterally organized with period 365-380 ?. Copyright 2000 Academic Press.  相似文献   

11.
Structural patterns that have the same spatial periodicity but a phase offset give rise to peaks and anti-peaks (negative-going peaks) at the same q value in the SAXS structure function S(q). As an example, in ionic liquids we often find charge alternation, and at the distance where one finds a density enhancement of charges of the same type one also finds a depletion of charges of opposite sign. Another such situation arises with polar-apolar densities. At distances where there is enhancement of same-type (polar-polar or apolar-apolar) densities there is also a depletion of opposite-type (polar-apolar) density. This gives rise to prepeaks and what we call same spatial periodicity anti-prepeaks.  相似文献   

12.
The phase state of a series of poly(n-octadecyl methacrylate)-b-poly(tert-butyl acrylate)-b-poly(n-octadecyl methacrylate) (pODMA-b-ptBA-b-pODMA) triblock copolymers, synthesized through atom transfer radical polymerization, has been investigated in bulk and on surfaces using small-angle X-ray scattering and atomic force microscopy, respectively. The mean-field theory was employed to construct the bulk phase diagram. Excellent agreement was found between the bulk and surface morphologies as well as for the domain spacing (domain spacing scaled as d approximately equal to N(0.64)), suggesting that the strong polymer-polymer interactions in bulk are also the dominant interactions on surfaces.  相似文献   

13.
The transmission of high-frequency shear stress through a microscopic contact between an AFM tip and an oscillating quartz plate was measured as a function of vertical pressure, amplitude, and surface properties by monitoring the MHz component of the tip's deflection. For dry surfaces, the transmission of shear stress is proportional to the vertical load across the contact. This provides a measure of the forces of adhesion between the substrate and the tip. When stretching soft polymeric fibers created by pulling on the surface of a pressure sensitive adhesive, the transmitted shear stress decreased linearly with extension over the entire range of pulling. This contrasts with the static adhesive force, which remained about constant until it discontinuously dropped at the point of rupture.  相似文献   

14.
Pulsed Force Mode was successfully used to investigate hybrid sol–gel films based on organically modified silicon alkoxides. This technique provides, simultaneously to the surface corrugation analysis, a measure of the local mechanical properties of the material (stiffness and adhesion). Such a study of the tribological properties of the material at a nanoscopic scale is of highest interest to investigate the influence of material synthesis parameters on the architecture of the nanocomposite material. In particular, we emphasize on the influence of the irradiation time and the inorganic synthesis parameters on the mechanical properties of the films. The advantages of this technique are multiple: AFM/PFM appears to be well-adapted for the characterization of thin films and the submicronic lateral resolution of the technique opens the door to the study of micro- or nano-patterned hybrid structures.  相似文献   

15.
For preparing a “highly lubricated biointerface”, which has both excellent lubricity and biocompatibility, we investigated the factors responsible for resistance to friction during polymer grafting. We prepared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(methyl methacrylate) (PMMA) brush layers with high graft density and well-controlled thickness using atom transfer radical polymerization (ATRP). We measured the water absorptivity in the polymer brush layers and the viscoelasticity of the polymer-hydrated layers using a quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The PMPC brush layer had the highest water absorptivity, while the PMPC-hydrated layer had the highest fluidity. The friction properties of the polymer brush layers were determined in air, water, and toluene by atomic force microscopy (AFM). The friction on each polymer brush decreased only when a good solvent was chosen for each polymer. In conclusion, the brush layer possessing high water absorptivity and fluidity in water contributes to reduce friction. PMPC grafting is an effective and promising method for obtaining highly lubricated biointerfaces.  相似文献   

16.
A combination of (1)H self-diffusion measurements and (13)C chemical shift analysis has been used for the study of the solubilization of amphiphilic additives C(n)H(2n+1)X (n=4, 6; X=OH, NH(2)) in cetyltrimethylammonium bromide (CTAB) micelles. This approach, which could be extended to other mixed systems, allows complementary data on structures of micelles and conformations of alkyl chains to be obtained. Previous results on these systems are confirmed and new features emerge. All the additives studied behave as cosurfactants. Their degree of solubilization is determined solely by their alkyl chain length. In the case of cosurfactants with n=6, polar head group differences have been shown to modify micellar structures. This effect has been linked to differences in cosurfactant penetration into micelles. In parallel, the area of CTAB head groups and the length of cetyl chains gradually decrease on average when solubilizing more cosurfactants. Cetyl chain compression is strong in the case of cosurfactants with n=4, whereas it is slightly compensated by an extension below the micellar surface in the case of longer cosurfactants. These conformational changes are related respectively to the formation of smaller spherical micelles and of anisotropic or swollen micelles.  相似文献   

17.
Interactions between Nitric oxide (NO) and DDPA Langmuir-Blodgett (LB) film are investigated with second harmonic generation (SHG) and atomic force microscopy (AFM). It has been found that the adsorption of NO molecules on DDPA LB film only changes the value of the second-order susceptibility of the DDPA molecule on film but not its orientation.  相似文献   

18.
The solution self-assembly of alpha,omega-alkanedithiols onto Au(111) was investigated using atomic force microscopy (AFM). A heterogeneous surface morphology is apparent for 1,8-octanedithiol and for 1,9-nonanedithiol self-assembled monolayers (SAMs) prepared by solution immersion as compared to methyl-terminated n-alkanethiols. Local views from AFM images reveal a layer of mixed molecular orientations for alpha,omega-alkanedithiols, which evidence surface structures with heights corresponding to both lying-down and standing-up orientations. For dithiol SAMs prepared by solution self-assembly, the majority of alpha,omega-alkanedithiol molecules chemisorb with both thiol end groups bound to the Au(111) surface with the backbone of the alkane chain aligned parallel to the surface. However, AFM images disclose that there are also islands of standing molecules scattered throughout the surface. To measure the thickness of alpha,omega-alkanedithiol SAMs with angstrom sensitivity, methyl-terminated n-alkanethiols with known dimensions were used as molecular rulers. Under conditions of spatially constrained self-assembly, nanopatterns of alpha,omega-alkanedithiols written by nanografting formed monolayers with heights corresponding to an upright configuration.  相似文献   

19.
An H  Li X  Geng Y  Wang Y  Wang X  Li L  Li Z  Yang C 《The journal of physical chemistry. B》2008,112(39):12256-12262
The shear-induced coil-helix transition of isotactic polypropylene (iPP) has been studied with time-resolved Fourier transform infrared spectroscopy at various temperatures. The effects of temperature, shear rate, and strain on the coil-helix transition were studied systematically. The induced conformational order increases with the shear rate and strain. A threshold of shear strain is required to induce conformational ordering. High temperature reduces the effect of shear on the conformational order, though a simple correlation was not found. Following the shear-induced conformational ordering, relaxation of helices occurs, which follows the first-order exponential decay at temperatures well above the normal melting point of iPP. The relaxation time versus temperature is fitted with an Arrhenius law, which generates an activation energy of 135 kJ/mol for the helix-coil transition of iPP. At temperatures around the normal melting point, two exponential decays are needed to fit well on the relaxation kinetic of helices. This suggests that two different states of helices are induced by shear: (i) isolated single helices far away from each other without interactions, which have a fast relaxation kinetic; (ii) aggregations of helices or helical bundles with strong interactions among each other, which have a much slower relaxation process. The helical bundles are assumed to be the precursors of nuclei for crystallization. The different helix concentrations and distributions are the origin of the three different processes of crystallization after shear. The correlation between the shear-induced conformational order and crystallization is discussed.  相似文献   

20.
The microwave spectrum of 1,1,1-trifluoro-2-propanol, CF(3)CH(OH)CH(3), and one deuterated species, CF(3)CH(OD)CH(3), have been investigated in the 20.0-62.0 GHz spectral region at about -50 degrees C. The rotational spectrum of one of the three possible rotameric forms was assigned. This conformer is stabilized by an intramolecular hydrogen bond formed between the hydrogen atom of the hydroxyl group and the nearest fluorine atoms. The hydrogen bond is weak and assumed to be mainly a result of attraction between the O-H and the C-F bond dipoles, which are nearly antiparallel. The identified rotamer is at least 3 kJ/mol more stable than any other rotameric form. Two vibrationally excited states belonging to two different normal modes were assigned for this conformer, and their frequencies were determined by relative intensity measurements. The microwave work has been assisted by quantum chemical computations at the MP2/cc-pVTZ and B3LYP/6-311++G** levels of theory, as well as by the infrared spectrum of the O-H stretching vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号