首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysulfone/poly(ethylene glycol) amphiphilic networks were prepared via in situ photo-induced free radical crosslinking polymerization. First, the hydrophobic polysulfone diacrylate (PSU-DA) oligomer was synthesized by condensation polymerization and subsequent esterification processes. Then, the obtained oligomer was co-crosslinked with the hydrophilic poly(ethylene glycol) diacrylate (PEG-DA) or poly(ethylene glycol) methyl ether acrylate (PEG-MA) at different feed ratios. In the case of PEG-MA, the resulting network possessed dangling pendant hydrophilic chains on the crosslinked surface. The structure and the morphology of the membranes were characterized by attenuated total reflection infrared spectroscopy (ATR-IR) and scanning electron microscopy (SEM). The enhancement of surface hydrophilicity was investigated by water contact angle measurements. The biomolecule adsorption properties of these networks were also studied. The biomolecules easily adsorbed on the surface of the hydrophobic polysulfone networks whereas dangling hydrophilic chains on the surface prevented the adsorption of the biomolecules.  相似文献   

2.
Three kinds of amphiphilic polymers, including the tri-block copolymer of (polyethylene oxide)–(polypropylene oxide)–(polyethylene oxide) (I, EPTBP), the comb-like copolymer of polysiloxane with polyethylene oxide and polypropylene oxide side chains (II, ACPS) and the hyperbranched star copolymer of polyester-g-methoxyl polyethylene glycol (III, HPE-g-MPEG), were blended with PVDF to fabricate porous membranes via a phase inversion process, respectively, and the effects of the different structures of the amphiphilic polymers on the properties of the blend membranes were compared. The membranes were characterized by scanning electron microscopy (SEM), elemental analysis, X-ray photoelectron spectroscopy (XPS) analysis, mercury porosimetry, water contact angle measurements, etc. The anti-fouling properties of the prepared membranes were evaluated by static and dynamic bovine serum albumin (BSA) adsorptions. Specially, the stabilities of these amphiphilic polymers in the final membranes were estimated by continuous leaching tests. At the same time, the properties of the membranes using the amphiphilic polymers as modifiers were compared with those of the membrane using poly(ethylene glycol) (PEG) as modifier.  相似文献   

3.
Inverse emulsion photopolymerization of acrylated poly(ethylene glycol)-bl-poly(propylene glycol)-bl-poly(ethylene glycol) and poly(ethylene glycol) was successfully employed to prepare stable, cross-linked, amphiphilic nanoparticles. Even at low emulsifier concentrations (2%) and high water-to-hexane weight ratios (35/65), the stability of the inverse emulsion allowed for the formation of well-defined colloidal material. Inverse emulsion characteristics and polymerization conditions could be controlled to vary the size of the nanoparticles between 50 and 500 nm. The presence of hydrophobic nanodomains within these otherwise hydrophilic nanoparticles was verified by using pyrene as a microenvironmentally sensitive probe. The hydrophobic poly(propylene glycol)-rich domains appear to be suitable for incorporation of hydrophobic drugs, encapsulating Doxorubicin up to 9.8% (w/w). We believe that the complex nano-architecture of these materials makes them a potentially interesting colloidal drug delivery carrier system and that the method should be useful for a number of amphiphilic macromolecular precursors.  相似文献   

4.
Mesostructured silica-titania mixed oxide films in which the titania is well accessible on the silicate pore wall have been synthesized by a ligand-assisted templating (LAT) approach in combination with sol-gel processing. Control over the different hydrolysis and condensation rates of silicon and titanium alkoxides was achieved by complexation of the titanium species to the poly(ethylene oxide) part of an amphiphilic surfactant molecule (Brij56®). This modified precursor was used as structure-directing agent in the formation of thin mesostructured films. The structure and composition of the resulting material was characterized by X-ray diffraction, UV-vis spectroscopy and transmission electron microscopy.  相似文献   

5.
以不同官能化碳纳米管(原始MCN、氨基化AMCN和石墨化GMCN等)作为载体,通过浸渍法制备了Ru/CNTs催化剂,并应用于山梨醇氢解制1,2-丙二醇和乙二醇反应中。利用XRD、HRTEM、XPS和ICP-AES等方法对催化剂进行了表征,考察了官能团性质、碱助剂等因素对山梨醇氢解性能的影响。结果表明,与Ru/MCN或Ru/GMCN相比较,Ru/AMCN催化剂对山梨醇氢解有更高的活性,在205℃、5.0 MPa氢压条件下,以Ca(OH)2为添加剂,山梨醇的转化率可达99.5%,1,2-丙二醇(1,2-PD)和乙二醇(EG)的总产率为47.7%。催化剂重复利用五次,催化活性无明显下降。  相似文献   

6.
Facile organization of the inorganic sandwiched heteropolytungstomolybdate K13[Eu(SiW9Mo2O39)2] (E) into highly ordered supramolecular nanostructured materials by complexation with a series of cationic surfactants is achieved by the ionic self-assembly (ISA) route. The structure and phase behavior of the complexes were examined by IR spectroscopy, differential scanning calorimetry, optical microscopy, and small- and wide-angle X-ray scattering. This class of materials shows a number of interesting physicochemical properties, namely liquid-crystalline phases (both thermotropic and lyotropic) and strong photoluminescence. The photophysical behavior (fluorescence spectra, fluorescence lifetimes, fluorescence quantum yield) of the complexes differs widely in solid powders, films, and solutions. The amphiphilic cationic surfactants not only play a structural role but also have a strong influence on the photophysical properties of E. The photophysical behavior of E can in this way be easily modified by its organizational motifs.  相似文献   

7.
Herein, a facile water-assisted templating approach, the so-called breath figures method, has been employed to prepare multifunctional and hierarchically structured porous patterned films with order at different length scales (nano- and micrometer). Tetrahydrofuran solutions of ternary blends consisting on high molecular weight polystyrene, an amphiphilic block copolymer, polystyrene-b-poly[poly(ethylene glycol) methyl ether methacrylate] (PS(40)-b-P(PEGMA300)(48)), and a fluorinated copolymer, polystyrene-b-poly(2,3,4,5,6-pentafluorostyrene) (P5FS(21)-b-PS(31)), have been used to obtain films varying the proportion of the three components. Confocal micro-Raman spectroscopy and atomic force microscopy demonstrated the preferential location of the different functionalities in the films. Because of the breath figures mechanism, the amphiphilic copolymer yield pores enriched in hydrophilic functionality while the fluorinated copolymer remained mixed with the PS matrix and eventually also forming self-assembled nanostructures at the surface. As a consequence, two levels of order can be observed, i.e., micrometer size pores with nanostructured domains due to the block copolymer self-assembly. In addition, the distribution of the amphiphilic copolymer within the holes is not regular being located principally on the edges of the cavities. This can be attributed to the coffee stain phenomenon occurring in the water droplets as a consequence of the segregation of the block copolymers to the droplets and their self-assembly.  相似文献   

8.
The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm−1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (χ) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.  相似文献   

9.
Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.  相似文献   

10.
根据绿色荧光蛋白的发光原理,采用聚乙二醇与聚甲基丙烯酸甲酯的两亲性两嵌段聚合物通过自组装包覆生色团的方式,模拟了绿色荧光蛋白发光,考察了组装行为对光学性能的影响,并将其用于细胞成像.通过核磁共振、高分辨质谱、傅里叶变换红外光谱、凝胶渗透色谱、紫外-可见吸收光谱及荧光光谱等表征了生色团分子和聚合物的结构及性能.生色团紫外最大吸收在371 nm,荧光最大发射峰在428 nm.聚合物和生色团进行组装后,其紫外吸收消失,而最大荧光发射峰强度大大增强,且发生了约70 nm的红移,这是因为组装使得生色团的自由旋转受到了限制,且生色团共平面性增加.动态光散射(DLS)和透射电镜(TEM)证明了纳米粒子的结构和尺寸.由于尺寸适合且具有较好的荧光性能,纳米粒子成功应用于细胞成像.这种绿色荧光蛋白生色团的简单自组装方式在生物成像领域具有良好应用前景.  相似文献   

11.
Graphene-like materials of oxidized graphite (OG) were obtained by boiling in ethylene glycol, microwave treatment of a suspension of OG in ethylene glycol, and microwave treatment of dry OG without using solvents. The obtained materials were characterized by X-ray photoelectron spectroscopy (XPS), IR spectroscopy, atomic force microscopy, elemental analysis, and electrochemical measurements. Microwave treatment of dry OG gave the most disperse material (~400 m2/g) with an oxygen content of no more than 20%. Treatment in 0.5 M H2SO4 for 50 h at 60°C in oxygen did not lead to oxidation and was accompanied by an increase in the dispersity of this material.  相似文献   

12.
A facile synthetic route for the preparation of dicationic ethylene glycol based‐ionic liquids (ILs) via the azide/alkyne “click” reaction is presented. The copper(I) catalyzed, microwave‐assisted azide/alkyne “click” reaction between diazido‐ethylene glycols and the corresponding alkyne containing IL‐head group enables a simple preparation of different sets of poly(ethylene glycol)‐based ILs. Beside tetra‐ and hexa(ethylene glycol)‐based ILs, also oligomeric (Mn = 400 g/mol) and polymeric ILs (Mn up to 1550 g/mol) could be prepared in good yield and with full conversion of the ionic head group. The prepared ILs were extensively characterized via NMR spectroscopy and ESI‐time‐of‐flight (TOF) mass spectroscopy, revealing the formation of multiply charged ions in the negative mode. Thermal stability proved to be exceptionally high (up to 300 °C) together with low glass‐transition temperatures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Plasma-deposited PEG-like films are emerging as promising materials for preventing protein and bacterial attachment to surfaces. To date, there has not been a detailed surface analysis to examine the chemistry and molecular structure of these films as a function of both precursor size and structure. In this paper, we describe radio-frequency plasma deposition of a series of short-chain oligoglymes, dioxane, and crown ethers onto glass cover slips to create poly(ethylene glycol)-like coatings. The resultant films were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), dynamic contact angle goniometry, and radiolabeled fibrinogen adsorption. Detailed analysis of the high-mass (120-300 m/z) TOF-SIMS oligoglyme film spectra revealed six classes of significant fragments. Two new models are proposed to describe how these fragments could be formed by distinct film-building processes: incorporation of intact and fragmented precursor molecules. The models also provide for the incorporation of hydrocarbon--a species that is not present in the precursors but is evidenced in XPS C(1s) spectra of these films. Two additional models describe the effects of incorporating intact and fragmented cyclic precursors.  相似文献   

14.
High-quality nanocrystals formed in organic solvents can be completely solubilized in water using amphiphilic copolymers containing poly(ethylene glycol) or PEG. These copolymers are generated using a maleic anhydride coupling scheme that permits the coupling of a wide variety of PEG polymers, both unfunctionalized and functionalized, to hydrophobic tails. Thermogravimetric analysis, size exclusion chromatography, cryogenic transmission electron microscopy, and infrared spectroscopy all indicate that the copolymers effectively coat the nanocrystals surfaces. The composite nanocrystal-polymer assemblies can be targeted to recognize cancer cells with Her2 receptor and are biocompatible if their surface coatings contain PEG. In the particular case of semiconductor nanocrystals (e.g., quantum dots), the materials in water have the same optical spectra as well as quantum yield as those formed initially in organic solutions.  相似文献   

15.
锂离子电池的低温性能主要取决于石墨负极,通过添加剂来改善负极的低温性能是研究的焦点之一. 本文比较了3种具有不同含硫官能团的添加剂DTD(ethylene sulfate)、1,3-PS(1,3-propane sultone)和ES(ethylene sulfite)对传统商业化材料人造石墨负极低温性能的影响. DFT(密度泛函理论)计算、扫描伏安法(CV)、扫描电子显微镜(SEM)和电化学测试结果表明,3种含硫添加剂均可在人造石墨负极表面参与成膜,并对其低温性能产生比较大的影响. 其中,DTD对石墨负极低温性能改善最为明显,1,3-PS对石墨负极的低温性能造成不利影响,而ES则没有明显作用. 电化学交流阻抗(EIS)和X射线光电子能谱(XPS)表明,这3种添加剂的不同作用主要在于其所形成的电极界面膜在电化学阻抗方面存在着明显的差异.  相似文献   

16.
We have synthesized a series of amphiphilic molecules consisting of oligo(phenylene vinylene) (OPV) asymmetrically end-substituted with a hydrophilic poly(ethylene glycol) (PEG) segment and a hydrophobic alkyl chain. This amphiphilic structure induces self-assembly into both thermotropic and lyotropic lamellar liquid crystalline (LC) phases. The molecules form strongly fluorescent, self-supporting gels in both water and polar organic solvents, even at high concentrations on the order of 30 wt %. These self-assembled structures have been characterized by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and polarized optical microscopy (POM). Photoluminescence (PL) is influenced by the structure of the material, with enhanced emission in the LC state due to assembly of the chromophore in confined two-dimensional layers. Self-assembly controlling molecular aggregation at the nanoscale could significantly improve the performance of OPV-based materials in optoelectronic devices.  相似文献   

17.
利用恒电位共沉积技术和热处理的方法成功制备了GaSb薄膜,探索了添加乙二醇溶剂对薄膜结晶性和形貌的影响. 采用循环伏安法初步研究了共沉积GaSb的机理,并用X-射线衍射技术(XRD)、扫描电子显微技术(SEM)和能谱分析(EDS)表征、观察样品. 研究表明,在沉积过程中,SbO+先还原成Sb单质,再诱导Ga3+发生共沉积;沉积电位对薄膜的结晶性、微观形貌和成分有显著影响;电解液加入乙二醇更利于在较正电位下直接沉积出GaSb,且有效地提高了薄膜的结晶度,改善了薄膜的微观形貌.  相似文献   

18.
Metal oxide nanostructures hold great potential for photovoltaic (PV), photoelectrochemical (PEC), and photocatalytic applications. Whereas thin films of various materials of both nanoparticle and nanorod morphologies have been widely investigated, there have been few inquiries into nanodisk structures. Here, we report the synthesis of ultrathin WO3 nanodisks using a wet chemical route with poly(ethylene glycol) (PEG) as a surface modulator. The reported nanodisk structure is based on the interaction of the nonionic 10000 g/mol PEG molecules with tungsten oxoanion precursors. The WO3 nanostructures formed are dominated by very thin disks with dimensions on the nanometer to micrometer scale. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the structures to have dimensions on the order of 350-1000 nm in length, 200-750 nm in width, and 7-18 nm in thickness and possessing textured single-crystalline features. A number of analytical techniques were used to characterize the WO3 nanodisks, including selected-area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Raman scattering spectroscopy, UV-visible spectrophotometry, and cyclic voltammetry (CV). The growth of the WO3 nanodisks was inhibited in the [010] crystal direction, leading to ultrathin morphologies in the monoclinic crystal phase. The large flat surface area and high aspect ratio of the WO3 nanodisks are potentially useful in PEC cells for hydrogen production via direct water splitting, as has been demonstrated in a preliminary experiment with external bias.  相似文献   

19.
A novel strategy for the preparation of thin hydrogel coatings on top of polymer bulk materials was elaborated for the example of poly(ethylene terephthalate) (PET) surfaces layered with poly(vinylpyrrolidone) (PVP). PVP layers were deposited on PET foils or SiO2 surfaces (silicon wafer or glass coverslips) precoated with PET and subsequently cross-linked by electron beam treatment. The obtained films were characterized by ellipsometry, X-ray photoelectron spectroscopy, infrared spectroscopy in attenuated total reflection, atomic force microscopy (AFM), and electrokinetic measurements. Ellipsometric experiments and AFM force-distance measurements showed that the cross-linked layers swell in aqueous solutions by a factor of about 7. Electrokinetic experiments indicated a strong hydrodynamic shielding of the charge of the underlying PET layer by the hydrogel coatings and further proved that the swollen films were stable against shear stress and variation of pH. In conclusion, electron beam cross-linking ofpreadsorbed hydrophilic polymers permits a durable fixation of swellable polymer networks on polymer supports which can be adapted to materials in a wide variety of shapes.  相似文献   

20.
Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号