首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Solid Transportation Problem (STP) arises when bounds are given on three item properties. The Fuzzy Solid Transportation Problem (FSTP) appears when the nature of the data problem is fuzzy. This paper deals with the FSTP in the case in which the fuzziness affects the constraint set, and a fuzzy solution to the problem is required. Moreover, an arbitrary linear or nonlinear objective function is considered. In order to find a fuzzy solution to the problem, a parametric approach is used to obtain an auxiliary Parametric Solid Transportation Problem (PSTP) associated to the original problem. As there are no well-known solution methods proposed in literature to solve effectively the PSTP, in this paper an Evolutionary Algorithm (EA) based solution method is proposed to solve it, which can finally be applied to find a “good” fuzzy solution to the FSTP. Comparisons with another conventional method are presented and the results show the EA based approach to be better as a whole.  相似文献   

2.
In the present paper the fixed charge transportation problem under uncertainty, particularly when parameters are given in interval forms, is formulated. In this case it is assumed that both cost and constraint parameters are arrived in interval numbers. Considering two different order relations for interval numbers, two solution procedures are developed in order to obtain an optimal solution for interval fixed charge transportation problem (IFCTP). In addition, the two order relations are compared to give a better comprehension of their differences. Furthermore, numerical examples are provided to illustrate each of solution procedures.  相似文献   

3.
Several fuzzy approaches can be considered for solving multiobjective transportation problem. This paper presents a fuzzy goal programming approach to determine an optimal compromise solution for the multiobjective transportation problem. We assume that each objective function has a fuzzy goal. Also we assign a special type of nonlinear (hyperbolic) membership function to each objective function to describe each fuzzy goal. The approach focuses on minimizing the negative deviation variables from 1 to obtain a compromise solution of the multiobjective transportation problem. We show that the proposed method and the fuzzy programming method are equivalent. In addition, the proposed approach can be applied to solve other multiobjective mathematical programming problems. A numerical example is given to illustrate the efficiency of the proposed approach.  相似文献   

4.
To the best of our knowledge till now there is no method in the literature to find the exact fuzzy optimal solution of unbalanced fully fuzzy transportation problems. In this paper, the shortcomings and limitations of some of the existing methods for solving the problems are pointed out and to overcome these shortcomings and limitations, two new methods are proposed to find the exact fuzzy optimal solution of unbalanced fuzzy transportation problems by representing all the parameters as LR flat fuzzy numbers. To show the advantages of the proposed methods over existing methods, a fully fuzzy transportation problem which may not be solved by using any of the existing methods, is solved by using the proposed methods and by comparing the results, obtained by using the existing methods and proposed methods. It is shown that it is better to use proposed methods as compared to existing methods.  相似文献   

5.
需求区间型运输问题的求解算法   总被引:4,自引:1,他引:3  
为了便于建立与需求区间型运输问题有关的决策支持系统,本给出了一个求解需求区间型运输问题的数值算法,证明了算法的理论依据,并举例说明算法的应用,该算法能求得问题的最优解,并具有易于编程实现、收敛性好等优点,大量数值实验表明该算法有较高的计算效率。  相似文献   

6.
Demand and supply pattern for most products varies during their life cycle in the markets. In this paper, the author presents a transportation problem with non-linear constraints in which supply and demand are symmetric trapezoidal fuzzy value. In order to reflect a more realistic pattern, the unit of transportation cost is assumed to be stochastic. Then, the non-linear constraints are linearized by adding auxiliary constraints. Finally, the optimal solution of the problem is found by solving the linear programming problem with fuzzy and crisp constraints and by applying fuzzy programming technique. A new method proposed to solve this problem, and is illustrated through numerical examples. Multi-objective goal programming methodology is applied to solve this problem. The results of this research were developed and used as one of the Decision Support System models in the Logistics Department of Kayson Co.  相似文献   

7.
Mixed-integer optimization models for chemical process planning typically assume that model parameters can be accurately predicted. As precise forecasts are difficult to obtain, process planning usually involves uncertainty and ambiguity in the data. This paper presents an application of fuzzy programming to process planning. The forecast parameters are assumed to be fuzzy with a linear or triangular membership function. The process planning problem is then formulated in terms of decision making in a fuzzy environment with fuzzy constraints and fuzzy net present value goals. The model is transformed to a deterministic mixed-integer linear program or mixed-integer nonlinear program depending on the type of uncertainty involved in the problem. For the nonlinear case, a global optimization algorithm is developed for its solution. This algorithm is applicable to general possibilistic programs and can be used as an alternative to the commonly used bisection method. Illustrative examples and computational results for a petrochemical complex with 38 processes and 24 products illustrate the applicability of the developed models and algorithms.  相似文献   

8.
To find the fuzzy optimal solution of fuzzy transportation problems it is assumed that the direct route between a source and a destination is a minimum-cost route. However, in actual application, the minimum-cost route is not known a priori. In fact, the minimum-cost route from one source to another destination may well pass through another source first. In this paper, a new method is proposed to find the fuzzy optimal solution of fuzzy transportation problems with the following transshipment: (1) From a source to any another source, (2) from a destination to another destination, and (3) from a destination to any source. In the proposed method all the parameters are represented by trapezoidal fuzzy numbers. To illustrate the proposed method a fuzzy transportation problem with transshipment is solved. The proposed method is easy to understand and to apply for finding the fuzzy optimal solution of fuzzy transportation problems with transshipment occurring in real life situations.  相似文献   

9.
G. Bigi 《Optimization》2017,66(12):1955-1972
The auxiliary problem principle allows solving a given equilibrium problem (EP) through an equivalent auxiliary problem with better properties. The paper investigates two families of auxiliary EPs: the classical auxiliary problems, in which a regularizing term is added to the equilibrium bifunction, and the regularized Minty EPs. The conditions that ensure the equivalence of a given EP with each of these auxiliary problems are investigated exploiting parametric definitions of different kinds of convexity and monotonicity. This analysis leads to extending some known results for variational inequalities and linear EPs to the general case together with new equivalences. Stationarity and convexity properties of gap functions are investigated as well in this framework. Moreover, both new results on the existence of a unique solution and new error bounds based on gap functions with good convexity properties are obtained under weak quasimonotonicity or weak concavity assumptions.  相似文献   

10.
A type-2 fuzzy variable is a map from a fuzzy possibility space to the real number space; it is an appropriate tool for describing type-2 fuzziness. This paper first presents three kinds of critical values (CVs) for a regular fuzzy variable (RFV), and proposes three novel methods of reduction for a type-2 fuzzy variable. Secondly, this paper applies the reduction methods to data envelopment analysis (DEA) models with type-2 fuzzy inputs and outputs, and develops a new class of generalized credibility DEA models. According to the properties of generalized credibility, when the inputs and outputs are mutually independent type-2 triangular fuzzy variables, we can turn the proposed fuzzy DEA model into its equivalent parametric programming problem, in which the parameters can be used to characterize the degree of uncertainty about type-2 fuzziness. For any given parameters, the parametric programming model becomes a linear programming one that can be solved using standard optimization solvers. Finally, one numerical example is provided to illustrate the modeling idea and the efficiency of the proposed DEA model.  相似文献   

11.
To the best of our knowledge, till now there is no method described in literature to find exact fuzzy optimal solution of balanced as well as unbalanced fully fuzzy multi-objective transportation problems. In this paper, a new method named as Mehar??s method, is proposed to find the exact fuzzy optimal solution of fully fuzzy multi-objective transportation problems (FFMOTP). The advantages of the Mehar??s method over existing methods are also discussed. To show the advantages of the proposed method over existing methods, some FFMOTP, which cannot be solved by using any of the existing methods, are solved by using the proposed method and the results obtained are discussed. To illustrate the applicability of the Mehar??s method, a real life problem is solved.  相似文献   

12.
王珂  杨艳  周建 《运筹与管理》2020,29(2):88-107
针对物流网络规划问题中顾客需求和运输成本的不确定性,使用在险价值量化投资风险,建立了以投资损失的在险价值最小化为目标的模糊两阶段物流网络规划模型。对于模型中不确定参数均为规则模糊数的这一类模糊两阶段规划模型,本文通过理论分析和证明将其转化为等价的确定一阶段规划模型进行求解,从而将无穷维的优化问题转化为有限维的经典优化问题,降低了计算难度且得到了模型的精确解。不同规模的数值实验证实了所提出模型及其求解方法的有效性。  相似文献   

13.
We study an adjoint initial-boundary value problem for linear parabolic equations; which arises when modeling the unidirectional motion of two viscous fluids with a common interface under the action of a pressure gradient. Under some conditions on the pressure gradient, we obtain a priori estimates and show that the solution enters a stationary mode. For semibounded layers, we find the solution in closed form and indicate the case of a self-similar solution. We determine the volume flow rates in the layers.  相似文献   

14.
Incomplete information is notoriously common in planning soil and groundwater remediation. For making decisions groundwater flow and transport models are commonly used. However, uncertainty in prediction arises due to imprecise information on flow and transport parameters like saturated/unsaturated hydraulic conductivity, water retention curve parameters, precipitation and evapo-transpiration rates as well as factors governing the fate of pollutant in soil like dispersion, diffusion, degradation and chemical transformation. Different methods exist for quantifying uncertainty, e.g. first and second order Taylor’s Series and Monte-Carlo method. In this paper, a methodology based on fuzzy set theory is presented to express imprecision of input data, in terms of fuzzy number, to quantify the uncertainty in prediction. The application of the fuzzy set theory is demonstrated through pesticide (endosulfan) transport in an unsaturated layered soil profile. The governing partial differential equation along with fuzzy inputs, results in a non-linear optimization problem. The solution gives complete membership functions for flow (suction head) and pesticide concentration in soil column.  相似文献   

15.
There are several methods in the literature for solving transportation problems by representing the parameters as normal fuzzy numbers. Chiang [J. Chiang, The optimal solution of the transportation problem with fuzzy demand and fuzzy product, J. Inform. Sci. Eng. 21 (2005) 439-451] pointed out that it is better to represent the parameters as (λρ) interval-valued fuzzy numbers instead of normal fuzzy numbers and proposed a method to find the optimal solution of single objective transportation problems by representing the availability and demand as (λρ) interval-valued fuzzy numbers. In this paper, the shortcomings of the existing method are pointed out and to overcome these shortcomings, a new method is proposed to find solution of a linear multi-objective transportation problem by representing all the parameters as (λρ) interval-valued fuzzy numbers. To illustrate the proposed method a numerical example is solved. The advantages of the proposed method over existing method are also discussed.  相似文献   

16.
In many applications, the network design problem (NDP) faces significant uncertainty in transportation costs and demand, as it can be difficult to estimate current (and future values) of these quantities. In this paper, we present a robust optimization-based formulation for the NDP under transportation cost and demand uncertainty. We show that solving an approximation to this robust formulation of the NDP can be done efficiently for a network with single origin and destination per commodity and general uncertainty in transportation costs and demand that are independent of each other. For a network with path constraints, we propose an efficient column generation procedure to solve the linear programming relaxation. We also present computational results that show that the approximate robust solution found provides significant savings in the worst case while incurring only minor sub-optimality for specific instances of the uncertainty.  相似文献   

17.
This work develops a novel two-stage fuzzy optimization method for solving the multi-product multi-period (MPMP) production planning problem, in which the market demands and some of the inventory costs are assumed to be uncertainty and characterized by fuzzy variables with known possibility distributions. Some basic properties about the MPMP production planning problem are discussed. Since the fuzzy market demands and inventory costs usually have infinite supports, the proposed two-stage fuzzy MPMP production planning problem is an infinite-dimensional optimization problem that cannot be solved directly by conventional numerical solution methods. To overcome this difficulty, this paper adopts an approximation method (AM) to turn the original two-stage fuzzy MPMP production planning problem into a finite-dimensional optimization problem. The convergence about the AM is discussed to ensure the solution quality. After that, we design a heuristic algorithm, which combines the AM and simulated annealing (SA) algorithm, to solve the proposed two-stage fuzzy MPMP production planning problem. Finally, one real case study about a furniture manufacturing company is presented to illustrate the effectiveness and feasibility of the proposed modeling idea and designed algorithm.  相似文献   

18.
本文从供应链上企业的生产和客户需求的不确定性出发,提出了物流配送网络选址优化问题的带模糊约束规划的数学模型,并结合算法的特点提出其对应的混合遗传求解算法,模拟结果表明此算法可得到质量更高的优化解.  相似文献   

19.
具有模糊信息的多目标运输问题求解   总被引:13,自引:0,他引:13  
提出一种求解具有模糊信息的多目标运输问题的方法。利用专家意见通过模糊算法集给从各产地到各目的地运送单位物资的模糊综合指标值,运用一种对模糊数排序的方法,将模糊多目标运输问题转化为单目标的运输问题进行求解,最后给出了一个数值例子。  相似文献   

20.
We consider linear programming problems with uncertain objective function coefficients. For each coefficient of the objective function, an interval of uncertainty is known, and it is assumed that any coefficient can take on any value from the corresponding interval of uncertainty, regardless of the values taken by other coefficients. It is required to find a minmax regret solution. This problem received considerable attention in the recent literature, but its computational complexity status remained unknown. We prove that the problem is strongly NP-hard. This gives the first known example of a minmax regret optimization problem that is NP-hard in the case of interval-data representation of uncertainty but is polynomially solvable in the case of discrete-scenario representation of uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号