首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Highly ordered large pore SBA-15 silica functionalized with up to 16% aminopropyl groups, which gave high catalytic activity and selectivity toward flavanone synthesis through aldol condensation and subsequent intramolecular Michael addition of benzaldehyde and 2'-hydroxyacetophenone, was synthesized for the first time via co-condensation of tetraethylorthosilicate (TEOS) and 3-aminopropyltriethoxysilane (APTES) using an amphiphilic block copolymer as the structure-directing agent.  相似文献   

2.
Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption–desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity.  相似文献   

3.
SBA-15 mesoporous silica has been functionalized with aminopropyl groups through a simple co-condensation approach of tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES) using amphiphilic block copolymers under acidic conditions. The organic-modified SBA-15 materials have hexagonal crystallographic order, pore diameter up to 60 A, and the content of aminopropyl groups up to 2.3 mmol g(-1). The influences of TEOS prehydrolysis period and APTES concentration on the crystallographic order, pore size, surface area, and pore volume were examined. TEOS prehydrolysis prior to the addition of APTES was found essential to obtain well-ordered mesoporous materials with amino functionality. The amount of APTES incorporated in the silica framework increased with the APTES concentration in the synthesis gel, while the ordering of the mesoporous structure gradually decreased. Analysis with TG, IR, and solid state NMR spectra demonstrated that the aminopropyl groups incorporated in SBA-15 were not decomposed during the preparation procedure and the surfactant P123 was fully removed through ethanol extraction. The modified SBA-15 was an excellent base catalyst in Knoevenagel and Michael addition reactions.  相似文献   

4.
采用简单的方法合成高浓度氨基修饰的高度有序氧化硅材料并深入研究氨基官能化材料的孔结构以及氨基的存在状态和可利用性。结果表明,氨基基团共价连接到SBA-15的孔表面,即使初始合成体系中的APTES(氨丙基三乙氧基硅烷)浓度高达30mol%时材料依然保持高度的有序性。合成体系中APTES浓度为20%的样品还保持良好的介孔结构,比表面积为680 m2·g-1,孔容为0.89 cm3·g-1,此介孔结构中的氨基官能团对镍离子表现出很强的亲和力,Ni2+的吸附量高达1.88 mmol·g-1,相比之下未官能化的SBA-15对Ni2+没有吸附作用。当初始合成体系中APTES的浓度进一步增大到30%时,修饰到介孔氧化硅材料的氨基含量也随之增大,但由于材料的孔隙度急剧降低,这些氨基的可利用性也降低。  相似文献   

5.
Three kinds of highly ordered SBA-15 mesoporous materials with different pore sizes and morphologies denoted as LPS-SBA-15 (stick-like with pore size 7.28 nm), CPS-SBA-15 (stick-like with pore size 5.96 nm) and T-SBA-15 (tablet-like with pore size 4.64 nm) have been prepared, characterized and employed as carrier materials. The release behaviors of the ibuprofen in a simulated body fluid from these mesoporous silica materials were studied. The influences of pore size and exterior morphologies of mesoporous silica on the release behaviors of ibuprofen have been investigated. It has been found that the release becomes fast with increasing of pore size and slow with extending of transport pathway, and that the release rate of ibuprofen from the three kinds of SBA-15 is LPS-SBA-15 > T-SBA-15 > CPS-SBA-15. The results show that the inner structure as well as the exterior morphologies of SBA-15 mesoporous silica can seriously affect the release behaviors of ibuprofen.  相似文献   

6.
A short-time synthesis of SBA-15 is reported by using two different silica sources, sodium metasilicate (Na2SiO3(9)H2O) and tetraethyl orthosilicate (TEOS). The SBA-15 samples obtained from both silica sources were highly ordered as evidenced by SAXS spectra showing five reflection peaks characteristic for p6mm symmetry group. While the surface areas of these samples were similar, the pore volume of the sample prepared from TEOS was slightly larger than that from sodium metasilicate. However, the latter exhibited higher microporosity and thicker pore walls. It was shown that a significant reduction of time of the self-assembly step from 24 to 2 h had no detrimental influence on the quality of SBA-15 materials.  相似文献   

7.
8.
Liang Cao  Michal Kruk 《Adsorption》2010,16(4-5):465-472
A variety of ordered mesoporous carbons (OMCs) were synthesized using ordered mesoporous silicas (OMSs) as hard templates and the mesophase pitch (MP) as a carbon precursor. The synthesis included the mixing of OMS with MP, the infiltration of OMS with MP at 450–550?°C and the carbonization of MP in OMS/MP composite followed by the dissolution of the OMS template. OMCs with structures of two-dimensional hexagonal arrays of nanorods and three-dimensional arrays of nanospheres were obtained through the replication of silica templates, including large-pore SBA-15, KIT-6, large-pore FDU-12 and SBA-16. In particular, 2-D hexagonal array of carbon nanorods (CMK-3 carbon) with (100) interplanar spacing of ~13 nm as well as an array of carbon nanospheres arranged in the face-centered cubic structure with the unit-cell parameter of 33 nm were successfully prepared. The specific surface areas of the resulting carbons were up to 400 m2/g, and the total pore volumes were up to 0.43 cm3/g, with the highest values achieved when the MP infiltration temperature was 500?°C. The OMCs exhibited narrow mesopore size distributions. As inferred from XRD, the frameworks of OMCs featured semi-graphitic structures even though moderate carbonization temperature (850?°C) was employed.  相似文献   

9.
Nanocast silica (NCS-1) was synthesized by a casting process by employing the mesoporous carbon CMK-3 (the replica of SBA-15) as a template, tetraethoxysilane (TEOS) as the silica source, and hydrochloric acid (HCl) as the catalyst. The ordered carbon template was removed by employing different methods, such as calcination, thermal treatment followed by calcination, and controlled combustion. According to XRD and TEM characterization, NCS-1 exhibits an ordered structure with hexagonal symmetry and retains the morphology of the original SBA-15 used for the synthesis of CMK-3 over two replication steps on the nanometer scale. This demonstrates the well-connected porosity in CMK-3 type carbon, which can be used as a mold to synthesize mesostructured materials. The nitrogen adsorption isotherms generally show type IV shape, indicating mesoporous characteristics. The structure of NCS-1 is strongly influenced by variables of the nanocasting process, such as the loading amount of silica, hydrolysis temperature, and carbon removal methods. The surface area, pore size, and pore volume of NCS-1 can be tuned to a certain range by varying these parameters.  相似文献   

10.
We designed and synthesized a novel catalyst consisting of ordered mesoporous silica (SBA-15) functionalized with bis(thiourea) (BTU) linker. The regular and unique pore channels of BTU-SBA-15 ensure proper control of the size and homogeneous distribution of palladium nanoparticles. The physiochemical properties of the hybrid Pd@BTU-SBA-15 pre-catalyst were investigated using various techniques. The proposed catalyst is found to be very active, reusable, stable and scalable, and has excellent reactivity and selectivity for Suzuki and Heck coupling reactions under very mild and sustainable reaction conditions.  相似文献   

11.
Hexagonally ordered SBA-15 mesoporous silica spheres with large uniform pore diameters are obtained using the triblock copolymer, Pluronic P123, as template with a cosurfactant cetyltrimethylammonium bromide (CTAB) and the cosolvent ethanol in acidic media. A series of surface modified SBA-15 silica materials is prepared in the present work using mono- and trifunctional alkyl chains of various lengths which improves the hydrothermal and mechanical stability. Several techniques, such as element analysis, nitrogen sorption analysis, small angle X-ray diffraction, scanning electron microscopy (SEM), FTIR, solid-state (29)Si and (13)C NMR spectroscopy are employed to characterize the SBA-15 materials before and after surface modification with the organic components. Nitrogen sorption analysis is performed to calculate specific surface area, pore volume and pore size distribution. By surface modification with organic groups, the mesoporous SBA-15 silica spheres are potential materials for stationary phases in HPLC separation of small aromatic molecules and biomolecules. The HPLC performance of the present SBA-15 samples is therefore tested by means of a suitable test mixture.  相似文献   

12.
Nanoporous silica with narrow pore size distribution has attracted increasing attention as a novel material for separations and reactions involving large molecules. SBA-15 has been synthesized in an acidic medium using a triblock copolymer as template. In this work, the SBA-15 was synthesized by the hydrothermal treatment at 373 K for 48 h, of a gel with the following overall molar composition: 1.0TEOS:0.017P123:5.7HCl:193H2O, where TEOS is tetraethyl orthosilicate and P123 is poly(ethylene oxide, propylene oxide and 1,4-dioxane). The obtained material was characterized by thermogravimetry, X-ray diffraction, infrared spectroscopy and BET surface area. A kinetic study using the model free model was accomplished in the stage of decomposition of the template (P123). The obtained value of the apparent activation energy was ca. 131 kJ mol–1.  相似文献   

13.
Highly ordered mesoporous SBA-15 silica with large pore diameter of 18 nm (nominal BJH pore diameter ~22 nm) and short pore length (~500 nm) was synthesized using a micelle expander 1,3,5-triisopropylbenzene in the absence of ammonium fluoride by employing short initial stirring time at 17 °C followed by static aging at low temperature. Scanning and transmission electron microscopies revealed that the material comprised of platelet particles in which large mesopores were nearly flawlessly arranged within uniform domains up to 3 μm in size. The platelet SBA-15 had the (100) interplanar spacing of 17 nm, high surface area (~470 m(2) g(-1)) and large pore volume (~1.6 cm(3) g(-1)). The hydrothermal treatment at 130 °C for 2 days was employed to eliminate constrictions from the pore channels. The control experiment showed that a sample prepared with prolonged stirring had very similar mesoporous properties, but the particle size was smaller and the domains were irregular, proving that the static conditions facilitate the formation of SBA-15 with platelet particle morphology. The absence of ammonium fluoride was also critical in attaining the platelet particle shape.  相似文献   

14.
Platelet SBA-15 with significantly shortened and larger mesopores were prepared with different dosage of trimethylbenzene (TMB) in the assembly process, and then functionalized with acidic oxygen groups by oxidation of carbon layer that obtained by carbonization of P123-TMB organic species occluded in the silica pores. The preparation procedure involved three steps, namely, (a) synthesis platelet SBA-15 with larger mesopores, (b) carbonization, using P123 in the pore directly as the carbon source, and (c) oxidation with K2S2O8. The resulting oxidation and carbonization of platelet SBA-15 (CST-ox, where C = carbon, S = SBA-15, T = trimethylbenzene, and ox refers to oxidation) composites contained of carbonaceous matter with acid oxygen groups (e.g. –COOH, –C=O and –OH) attached onto the deposited carbon layer. The structural characteristics of the parent silica were retained in the oxidized composite materials, which exhibit high surface area, large pore volume and well-ordered porosity. The oxygen-functionalized CST-ox composites with larger mesopores were found to be excellent adsorbents towards methylene blue. Especially, the adsorption equilibrium time was significantly reduced from 60 to 20 min, and the maximum adsorption capacity was increased from 379 to 420 mg/L, for which may be closely associated with the larger pore size, highly shortened meso-channels and the functionalized carbon layers. The adsorption kinetic data were analysed using pseudo-first-order, pseudo-second-order and Weber’s intraparticle diffusion models. Also equilibrium data were fitted to the Langmuir, Freundlich isotherm models and isotherm constants were determined. Thermodynamic parameters such as changes in the free energy of adsorption (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were calculated.  相似文献   

15.
Large-pore SBA-15 silicas were synthesized using poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer Pluronic P123 as a template and hexane as a micelle expander. The reaction was initially carried out at 15 degrees C, followed by the heating of the synthesis gel at temperatures from 40 to 130 degrees C. Small-angle X-ray scattering data indicate that highly ordered two-dimensional hexagonal material (SBA-15 structure) formed at 15 degrees C and was preserved even after 5 days of heating at 130 degrees C. The unit-cell parameter for as-synthesized SBA-15 silicas was about 16.5 nm and increased only slightly after the heat treatment, whereas the unit-cell parameter after calcination was appreciably larger (16 vs 14 nm) for materials that were subjected to the thermal treatment. The pore size distribution of SBA-15 formed at 15 degrees C was narrow and centered at approximately 9.5 nm, which is close to the upper limit of pore diameters typically reported for SBA-15. The presence of constrictions in the pores of this material was evident. The heat treatment led to the elimination of the constrictions and to the pore diameter increase to 15 nm or more, tailored by the selection of appropriate treatment temperature and time. The pore size increase was the fastest during the first day of treatment, but it continued for at least 5 days. The pore size distribution broadened as the time of the treatment increased beyond 1 day. The pore size increase appears to be primarily related to the decrease in the degree of shrinkage during the calcination (removal of the template) and the decrease in the pore wall thickness.  相似文献   

16.
Highly ordered SBA-15 nanoporous silica containing ethylene, phenylene bridges or/and amine, thiol, vinyl and phenyl surface groups were synthesized by using amphiphilic block copolymer as the structure-directing agent. The XRD data shows high degree of the order of the final structures. Obtained materials have well-developed porous structure—values of specific surface area are in the range 700–1050 m2/g and the sizes of cylindrical mesopores are in the range 6.5–9.5 nm. It was determined that size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with TEOS. A new technique to introduce some amount of pendant amine groups by co-condensation of proper monomers has been proposed. Tetragonal structure was obtained when small amount of vinyl groups was introduced to the system. A new approach of determining pore size based only on the XRD measurements was compared with KJS method, confirming full usefulness of the former for calculation of the size of mesopores in SBA-15 materials. Dedicated to Professor Mietek Jaroniec on the occasion of his 60th birthday.  相似文献   

17.
以含巯基官能团有机硅烷修饰的介孔材料MCM-41和SBA-15为载体, 采用浸渍-氢气还原法制备了高分散和高活性的负载型Pd催化剂. X射线衍射、N2吸附-脱附和透射电子显微镜表征结果显示, 所制Pd催化剂Pd-SH-MCM-41和Pd-SH-SBA-15具有很好的长程有序结构、分布均匀的孔径、高比表面积及高度分散的Pd颗粒. 苯酚加氢反应结果表明, 以Pd-SH-MCM-41和Pd-SH-SBA-15为催化剂时, 在80℃, 1.0MPa反应1h, 苯酚转化率达99%以上, 环己酮选择性为98%. 它们的催化活性为商业Pd/C催化剂的5倍, Pd/MCM-41和Pd/SBA-15催化剂的3倍. 这可归因于介孔材料表面修饰的巯基官能团对Pd的锚定作用, 避免了Pd颗粒的团聚, 使其高度分散在介孔材料上.  相似文献   

18.
疏水介孔二氧化硅膜的制备与表征   总被引:1,自引:0,他引:1  
用甲基三乙氧基硅烷(MTES)代替部分正硅酸乙酯(TEOS)作为前驱体,以聚乙烯醚-聚丙烯醚-聚乙烯醚三嵌段共聚物(P123)作有机模板剂,通过共水解缩聚反应制备了甲基修饰的介孔SiO2膜。利用N2吸附、FTIR、29Si MAS NMR以及接触角测量仪对膜的孔结构和疏水性进行了表征。结果表明,修饰后的膜材料具有良好的介孔结构,最可几孔径为4.65 nm,孔体积为0.69 cm3·g-1,比表面积为938.4 m2·g-1;同时疏水性明显提高,当nMTES/nTEOS达到1.0时,其对水的接触角达到109°± 1.1°。气体渗透实验表明气体通过膜孔的扩散由努森机制所控制。  相似文献   

19.
Highly ordered amino-functionalized mesoporous silica thin films have been directly synthesized by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of triblock copolymer Pluronic P123 surfactant species under acidic conditions by sol-gel dip-coating. The effect of the sol aging on thin films organization is systematically studied, and the optimal sol aging time is obtained. The amino-functionalized mesoporous silica thin films exhibit a long-range ordering of 2D hexagonal (p6mm) mesostructure with a large pore size of 8.3 nm, a large Brunauer–Emmett–Teller (BET) specific surface area of 680 m2 g−1 and a large pore volume of 1.06 cm3 g−1 following surfactant extraction as demonstrated by X-ray diffraction (XRD), Transmission electron microscope (TEM), and physical adsorption techniques. Based on BET surface area and weight loss, the surface coverage of amino-groups for the amino-functionalized mesoporous silica thin films is calculated to be 3.2 amino-groups per nm2. Moreover, the functionalized thin films display improved properties for immobilization of cytochrome c in comparison with pure-silica mesoporous thin films.  相似文献   

20.
碳氟基团修饰的疏水微孔二氧化硅膜制备与表征   总被引:3,自引:0,他引:3  
采用三氟丙基三乙氧基硅烷(TFPTES)和正硅酸乙酯(TEOS)作为前驱体,通过溶胶-凝胶法制备了三氟丙基修饰的SiO2膜材料。利用扫描电镜、N2 吸附、 红外光谱仪以及视频光学接触角测量仪对膜的断面形貌、孔结构以及疏水性能进行了表征。结果表明,随着三氟丙基三乙氧基硅烷加入量的增大,膜的疏水性逐渐增强,膜的孔结构基本保持不变。当TFPTES/TEOS的摩尔比例达到0.6时,膜对水的接触角达到 111.6°±0.5º,膜材料仍保持良好的微孔结构,其孔体积为0.19cm3•g-1,孔径为0.97nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号