首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Laser gas-assisted treatment of Ti-6Al-4V alloy surface is carried out. The alloy surface is initially coated by a carbon layer, in which the TiC particles are embedded prior to laser processing of the surface. The carbon coating with the presence of TiC particles on the workpiece surface is expected to result in carbonitride compound in the surface vicinity after the laser treatment process. Optical and scanning electron microscopes are used to examine the morphological and the metallurgical changes in the laser treated layer. The residual stress formed in the surface region after the laser treatment process is critical for the practical applications of the resulting surface. Therefore, the residual stress formed in the laser treated region is predicted from the analytically equation. The X-ray diffraction technique is incorporated to obtain the residual stress formed in the surface region. It is found that the residual stress predicted agrees with the X-ray diffraction data. The dense structures consisting of TiCxN1−x, TiNx, Ti2N, and TiC compounds are formed in the surface region of the treated layer. This, in turn, significantly increases the microhardness at the surface.  相似文献   

2.
Laser treatment of pre-prepared zirconia surface is carried out. The pre-prepared surface, prior to laser treatment, consists of 50 μm carbon film and 7% titanium carbide particles, which are imbedded in the carbon film. The microstructural and morphological changes in the laser treated surface layer are examined using optical and scanning electron microscopes, energy dispersive spectroscopy, and X-ray diffraction. The fracture toughness of the laser treated surface is measured and the residual stress formed at the surface vicinity is determined from the X-ray diffraction technique. It is found that the microhardness of the laser treated surface increased slightly due to the dense layer formed at the surface vicinity. However, the laser treatment process reduces the fracture toughness of the surface due to improved surface hardness and the residual stress formed in the surface vicinity.  相似文献   

3.
激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究   总被引:6,自引:0,他引:6  
孙荣禄  杨贤金 《光学技术》2006,32(2):287-289
采用激光熔覆技术在TC4合金表面上制备了TiC陶瓷涂层,分析了熔覆层的微观组织,测试了熔覆层的硬度和摩擦磨损性能。结果表明:TiC激光熔覆层分为熔覆区和稀释区两个区域,熔覆区未受到基底的稀释,由TiC颗粒和TiC树枝晶组成;稀释区受到了基底的稀释,由TiC树枝晶和钛合金组成;TiC激光熔覆层的显微硬度在HV700~1500之间,明显地改善了TC4合金表面的摩擦和磨损性能。  相似文献   

4.
Y. Chen  H. M. Wang   《Applied Surface Science》2003,220(1-4):186-192
TiC reinforced composite coating on γ-TiAl alloy was successfully fabricated by laser surface alloying with carbon. The fine TiC reinforcing phase had a gradient distribution in the coating, and its growth morphology of TiC in laser surface alloyed coating was in unique faceted platelet-like. The composite coating exhibited high hardness and excellent high-temperature sliding wear resistance.  相似文献   

5.
在TC4合金表面进行了激光熔覆NiCrBSi合金涂层的试验 ,利用SEM和XRD等对熔覆层的微观组织进行了分析 ,测试了熔覆层的显微硬度。结果表明 ,激光工艺参数对熔覆层的组织和硬度有极大的影响 ,随稀释率的增加 ,激光熔覆层中形成了TiB2 和TiC等颗粒增强相 ,熔覆层的硬度明显提高。  相似文献   

6.
Laser gas assisted nitriding of Ti-6Al-4V alloy is carried out and nitride compounds formed and their concentration in the surface vicinity are examined. SEM, XRD and XPS are accommodated to examine the nitride layer characteristics. Microhardness across the nitride layer is measured. Temperature field and nitrogen distribution due to laser irradiation pulse is predicted. It is found that the nitride layer appears like golden color; however, it becomes dark gold color once the laser power irradiation is increased. The δ-TiN and ?-TiN are dominant phases in the surface vicinity. The needle like dendrite structure replace with the feathery like structure in the surface region due to high nitrogen concentration. No porous or microcracks are observed in the nitrided layer, except at high power irradiation, in this case, elongated cracks are observed in the surface region where the nitrogen concentration is considerably high.  相似文献   

7.
采用5 kW CO2激光器在低碳钢表面熔覆Co基合金涂层及TiN/Co基合金复合涂层,研究了两种涂层的组织、显微硬度以及滑动磨损性能。结果表明,Co基合金涂层主要组成相为-γCo,-εCo,Cr23C6等,TiN/Co基合金复合涂层组成相为-γCo,-εCo,Cr23C6,TiN和TiC等。Co基合金涂层由发达的-γCo枝晶和其间共晶组织所组成,TiN/Co基合金涂层典型组织为等轴固溶体以及细小的共晶组织。TiN对熔覆层的组织有显著的改善作用,促使其组织细化,树枝晶向等轴晶转化,同时可显著提高Co基合金涂层的显微硬度及耐磨性能。  相似文献   

8.
Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of −800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.  相似文献   

9.
Laser induced bending of steel sheet is carried out and thermal stress developed in the heated region is examined. Temperature and stress fields are predicted using the finite element model. The microstructural changes in the melted region are investigated through scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. The residual stress developed at the surface vicinity of the laser treated region is measured using the X-ray diffraction technique, which is then compared with its counterpart predicted from the simulations. It is found that the residual stress at the surface vicinity is compressive and the prediction of the residual stress agrees well with that obtained from the X-ray diffraction technique. In addition, surface temperature predictions are in good agreement with the thermocouple data. The laser treated region is free from major cracks and large cavities.  相似文献   

10.
Laser treatment of cemented carbide tool surface consisting of W, C, TiC, TaC is examined and thermal stress developed due to temperature gradients in the laser treated region is predicted numerically. Temperature rise in the substrate material is computed numerically using the Fourier heating model. Experiment is carried out to treat the tool surfaces using a CO2 laser while SEM, XRD and EDS are carried out for morphological and structural characterization of the treated surface. Laser parameters were selected include the laser output power, duty cycle, assisting gas pressure, scanning speed, and nominal focus setting of the focusing lens. It is found that temperature gradient attains significantly high values below the surface particularly for titanium and tantalum carbides, which in turn, results in high thermal stress generation in this region. SEM examination of laser treated surface and its cross section reveals that crack initiation below the surface occurs and crack extends over the depth of the laser treated region.  相似文献   

11.
Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.  相似文献   

12.
叙述了用一台输出功率为2kW的连续CO2激光器,在碳钢表面实现了激光熔敷WC-TiN-SiC-Co高硬质合金的实验方法,并对激光处理后的样品,从相的组成,显微组织,硬度分布及耐磨性能等方面作了综合分析。结果表明:样品表面的化学成分,显微组织和机械性能都发生了根本性转变和很大的提高,同时对激光熔敷形成高硬质合金的机理作了初步的探讨。 关键词:  相似文献   

13.
董长胜  谷雨  钟敏霖  马明星  黄婷  刘文今 《物理学报》2012,61(9):94211-094211
本文通过激光加工结合电化学腐蚀脱合金法, 成功实现了纳米多孔涂层的制备. 采用激光熔覆首先在45钢表面制备了成形良好、稀释率低的铜锰合金熔覆层, 并通过快速重熔工艺实现了初始材料组织细化. 研究表明, 在不同的电解液下,铜锰合金的临界腐蚀电位出现了明显的偏移; 在不同的腐蚀电流下,铜锰合金腐蚀后的形貌迥异. 最终,通过选择性腐蚀成功实现了纳米多孔铜和纳米多孔锰涂层的制备, 并利用电位-pH图对脱合金的选择性腐蚀进行了详细的理论解释.  相似文献   

14.
Surface modification is investigated experimentally by varying the time separation of double femtosecond laser radiation and surface ripples by varying the time separation and polarization direction of double pulses train. Nanometer-sized particles are formed during resolidification of the molten region when the second pulse arrives within 10 ps and the molten material is ejected much after 10 ps. The ripple in the outer region remains oblique to the sum of the vector direction of the two pulses when the time delay is zero. With time delay ranging from 0.5 to 10 ps and different polarization directions of the laser radiation, the ripple generally aligned perpendicular to the polarization direction of the electric field with multiple pulses in the vicinity of ablation threshold is effectively eliminated without fragments at the edge. Furthermore, remnant ripples on irradiated area at higher energies with the same polarization direction are removed by irradiation at a lower energy with each different polarization direction of double pulse. Based on morphological observations for different time delays, possible mechanisms of ripple formations and eliminations are suggested.  相似文献   

15.
Incoloy alloy 800 HT is widely used material of construction for equipment that must resist corrosion. Moreover, the corrosion properties of the alloy reduce considerably when the alloy is heat treated. However, the short pulse laser treatment of the alloy may offer alternative technique to improve the corrosion properties of the alloy. In the present study, nano-second pulse heating of Incoloy 800 HT alloy is carried out using a Nd-YAG laser. The heating rate and the temperature rise during the laser treatment are predicted theoretically. Electrochemical techniques are applied to determine the corrosion rates of the laser treated and untreated Incoloy 800 HT samples. SEM and EDS are introduced for metallographic examination of the treated alloy surface. It is found that the fine dentritic structures occur at the surface after the laser treatment. The local pitting is observed for the laser melted and re-solidified regions while the scattering of the pits are resulted for the laser heated and unmelted regions. In addition, the corrosion rate reduces for the laser-treated samples.  相似文献   

16.
Titanium carbide formation by the solid–solid reaction on the surface of Ti nanoparticles was studied in situ using a high-resolution transmission electron microscope with a heating stage. The cross-sectional image of the Ti surface was clearly observed. Vacuum-deposited carbon covered the whole the surface of Ti nanoparticles in spite of the partly evaporation on the nanoparticle surface. The diffusion of the carbon atoms inside the Ti nanoparticles depended on the size of the nanoparticles. When the Ti nanoparticle diameter was less than 30 nm, carbon atoms diffused into the Ti nanoparticle and formed TiC. The superstructure of the Ti nanoparticles was observed, which revealed the growth process of TiC to be the diffusion of carbon atoms. For Ti nanoparticles with diameter larger than 30 nm it was observed that diffusion of Ti atoms into the carbon layer was dominant, which resulted in formation of TiC in the carbon layer at the surface of Ti nanoparticles.  相似文献   

17.
为了增强Ti6Al4V钛合金的耐磨性,采用激光沉积制造方法在其表面上制备了以原位生成的TiC颗粒和直接添加的WC颗粒为增强相的耐磨涂层,观察了各涂层的微观组织,并测量了涂层的显微硬度和涂层在室温大气条件下的摩擦磨损性能。结果表明各涂层和基体呈现冶金结合,原位自生的TiC和部分熔化的WC颗粒均能够均匀弥散分布于基体上,由于增强相颗粒的弥散强化及激光沉积组织的细晶强化作用,基材的硬度和耐磨性均得到了提高。原位自生的TiC涂层比WC涂层硬度梯度分布平缓,但耐磨性稍差。  相似文献   

18.
Surface of Ti-52 at% Al alloy was modified via current heating technique. The Ti-52 at% Al alloy with 20 mm diameter × 1.5 mm thick disks was placed in graphitic powder in a glass tube and pressed against it. During the coating process, the direct current was applied across the samples at electrical power of 100-200 W for 10 min. By using X-ray diffraction (XRD), TiC was detected on the alloy treated at 180 W and above. Scanning electron microscopy (SEM) micrographs show the different morphologies, after treatment under different conditions. Energy dispersive X-ray spectroscopy (EDS), SEM and hardness tester show that the carbon concentration, particle size, void size and the hardness of the alloy were increased with the increasing of the applying electrical power, due to the formation of the carbide on the alloy surface.  相似文献   

19.
为了在不影响柱状晶组织的前提下改善DZ17G定向凝固合金的力学性能,采用微激光冲击强化方法进行表面处理,通过X射线衍射、扫描电子显微镜、透射电子显微镜和显微硬度计,测试分析微激光冲击对DZ17G定向凝固合金表面完整性的影响。试验结果表明:在水下无吸收保护层微激光冲击处理后,合金表面发生了烧蚀、熔融,1次冲击后形成光滑熔融区,但随着冲击次数增加而形成了大量微小烧蚀孔洞和难熔颗粒;表层组织仍由和两相组成,柱状晶内形成了高密度位错和位错缠结,但未发生晶粒细化;硬度在深度上呈梯度分布,冲击1次后硬化层深度仅为100 m,表面硬度值达到503 HV,提高了22.7%,而且硬度值和硬化层深度都随着冲击次数增加而增大。  相似文献   

20.
The problem of extreme focusing of an optical beam into the spatial region with wavelength dimensions is considered with the use of the special features of radiation interaction with isolated spherical particles. Results of numerical computations of the optical field intensity at the surface of silver particles of different radii upon exposure to laser radiation with different wavelengths are presented. It is demonstrated that the relative intensity of the plasmon optical field on the nanoparticle surface increases and the field focusing region decreases with increasing particle radius. Results of numerical computations illustrating the influence of the shell of composite nanoparticles comprising a dielectric core and a metal shell on the optical field intensity in the vicinity of the particle are presented. The problem of local optical foci of a transparent microparticle (photonic nanojets) is investigated. It is established that variation of the micron particle size, its optical properties, and laser radiation parameters allows the amplitude and spatial characteristics of the photonic nanojet region to be controlled efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号