首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gabriel Kerner 《Surface science》2006,600(10):2091-2095
A weakly bound buffer material is structured on a surface by interfering low power laser beams, as a template for patterning metallic thin films deposited on top. The excess buffer material and metal layer are subsequently removed by a second uniform laser pulse. This laser pre-structured buffer layer assisted patterning procedure is demonstrated for gold layer forming a grating on a single crystal Ru(1 0 0) under UHV conditions, using Xe as the buffer material. Millimeters long, submicron (0.65 μm) wide wires can be obtained using laser wavelength of 1.064 μm with sharp edges of less than 30 nm, as determined by AFM. This method provides an all-in-vacuum metallic film patterning procedure at the submicron range, with the potential to be developed down to the nanometer scale upon decreasing the patterning laser wavelength down to the UV range.  相似文献   

2.
Nanoporous manganese was fabricated by a three-step process involving high power laser cladding of a homogeneous Cu40Mn60 alloy coatings onto a mild steel substrate, laser remelting for tuning the grain size and the composition homogeneity followed by selectively electrochemical de-alloying for removal of Cu element and formation of nanoporous Mn. The microstructure and homogeneity of the precursor Cu40Mn60 alloys have a significant influence on the evolution of nanopores during selectively electrochemical de-alloying. Laser remelting can significantly refine the microstructure. The second dendrite arm spacing decreases with increasing of laser remelting scanning speed. A SDAS of 1.17 μm was obtained at the laser scanning speed of 133 mm/s. When the remelting scanning speed reaches 100 mm/s, a nanoporous structure with average pore size less than 100 nm was achieved under optimized dealloying electrode current density about 2 mA/cm2. Nanoporous Mn with nanopore sizes ranging from 80 to 130 nm was fabricated by this method. Surface-enhanced Raman scattering characteristics of the nanoporous materials have been investigated. It is found that smaller nanoporosity leads to significant improvements in surface-enhanced Raman scattering.  相似文献   

3.
In this study we perform the first femtosecond laser surface treatment of titanium in order to determine the potential of this technology for surface structuring of titanium implants. We find that the femtosecond laser produces a large variety of nanostructures (nanopores, nanoprotrusions) with a size down to 20 nm, multiple parallel grooved surface patterns with a period on the sub-micron level, microroughness in the range of 1-15 μm with various configurations, smooth surface with smooth micro-inhomogeneities, and smooth surface with sphere-like nanostructures down to 10 nm. Also, we have determined the optimal conditions for producing these surface structural modifications. Femtosecond laser treatment can produce a richer variety of surface structures on titanium for implants and other biomedical applications than long-pulse laser treatments.  相似文献   

4.
We present results where highly supersonic plasma jets and accelerated plasma fragments are generated by interaction of an intense picosecond laser pulse with a metallic target (Al, Cu, W, and Ta) in gas atmosphere. The formation of jets and well-localized massive plasma fragments occurs when a strong forward shock from a main laser pulse and a reverse shock from a pre-pulse meet to. Interferometric and shadow graphic measurements with high temporal (100 ps) and spatial (1 μm) resolution yield information about the formation and evolution of plasma jets and plasma fragments. The excitation of the electric and self-generated magnetic field by ponderomotive force during propagation of the laser pulse in a gas atmosphere was investigated as well. It had been shown previously that under certain conditions a hollow current channel can be generated in laser-produced plasma. The azimuthal magnetic field in such a micro-channel was determined by Faraday rotation of a probing laser beam to be 7.6 MGauss (MG). Ion acceleration in a pinched annular current channel up to 8 MeV analogous to micro-“plasma focus” conditions, may be realized at lengths of 100 μm. Self-generated magnetic fields of 4-7 MG have also been measured in thin skin layers in front of shock waves, where well-collimated plasma blocks were separated and accelerated away from the plasma body. The velocity of dense plasma blocks reaches values of order of 3 × 108 cm/s and they are stable during acceleration and propagation in gas.  相似文献   

5.
Attempts were made to optimize the electrochemical anodization process for the formation of high-density, regular and straight nanopore arrays on InP. The structure, shape and size of the pores were very sensitive to substrate orientations, electrolyte concentrations and anodization voltages. Among (1 1 1)A, (1 1 1)B and (0 0 1) substrate orientations, the most uniform and most straight nanopore arrays were obtained on (0 0 1) substrates at anodization voltages of 5-7 V by using 1.0-1.5 M HCl electrolyte containing HNO3. The pore depth could be controlled up to 80 μm by the anodization time.  相似文献   

6.
Wavy structures are often observed on the surface of a rubber material (polydimethylsiloxane, PDMS) covered with a thin metallic film. In this study we demonstrate that the orientation, periodicity, location of formation, and range of periodicity of the wavy structures can be regulated by three leading factors including the surface pattern, substrate hardness and the thickness of the metallic film. Results show the orientation of the wavy structures can be adjusted by the location, shape and size of the surface patterns. Enhancement of the substrate hardness can prevent forming random wavy structures. The thickness of surface metallic film significantly influenced the periodicity of the structures. Experimental results revealed an increase of the thickness of surface Au film by 50 nm, the periodicity was increased roughly by 1 μm. A compound structure, combining longitudinally preset patterns and transversely induced wavy structures, and a parallel wavy structure fabricated, respectively, by suitable arrangement of pattern configurations and adjustment of substrate hardness were demonstrated. The relatively simple approaches proposed here show the potential application in fabrication of designated complicate structures.  相似文献   

7.
A Tm:YLF laser pumped by a Raman shifted Er-fiber laser at 1.678 μm was studied at two Tm3+ ion concentrations equal to 1.5% and 5%. At output powers up to 460 mW the measured lasing efficiency at a wavelength of ~ 1.93 μm was as high as ~ 50%. The lasing performance was compared with that obtained under pumping by a 792-nm laser diode. The temporal structure of the laser pulse was recorded and the beam propagation factor M2 was measured for all pumping conditions.  相似文献   

8.
Femtosecond surface structure modifications are investigated under irradiation with laser pulses of 150 fs at 800 nm, on copper and silicon. We report sub-wavelength periodic structures formation (ripples) with a periodicity of 500 nm for both materials. These ripples are perpendicular to the laser polarization and can be obtained with only one pulse. The formation of these ripples corresponds to a fluence threshold of 1 J/cm2 for copper and 0.15 J/cm2 for silicon. We find several morphologies when more pulses are applied: larger ripples parallel to the polarization are formed with a periodicity of 1 μm and degenerate into a worm-like morphology with a higher number of pulses. In addition, walls of deep holes also show sub-wavelength and large ripples.  相似文献   

9.
The paper presents the results of theoretical and experimental researches of the analysis of nanopowder ZnO and ZnO-based structures formation mechanisms by means of pulse laser reactive technology (λ = 1.06 μm, τ = 10−7 to 10−5 s). The developed 2D model combines non-stationary heat transfer and fluid motion along with the calculated profile of surface deformation. The characteristics of the dispersive and chemical compositions and structural parameters of the synthesized nanopowder together with the influence of the energy of laser impulse evaporation, its duration and gas pressure in the reaction chamber have been studied using X-ray diffractrometry (XRD), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM). Particle size distribution analysis of ZnO has shown that the majority of them range from 5 to 60 nm in size. The photoluminescence emission spectra of the initial ZnO nanopowder at room temperature have been identified.  相似文献   

10.
Actively mode-locked electron-beam-sustained-discharge CO laser producing a train of ∼5-15 ns (FWHM) spikes following with repetition rate 10 MHz for both single-line and multiline mode of operation in the mid-IR range of ∼5 μm was experimentally studied. Total laser pulse duration was ∼0.5 ms for both mode-locked and free-running laser. Specific output energy in multiline CO laser mode of operation was up to 20 Jl−1 Amagat−1 and the laser efficiency up to 3.5%. The active mode-locking was achieved for single-line CO laser mode of operation in spectral range 5.2-5.3 μm. This sort of radiation can be used for pumping an optical parametric amplifier for optical stochastic cooling in relativistic heavy ion collider, for laser ablation, and for studying vibrational and rotational relaxation of CO and NO molecules.  相似文献   

11.
Periodic three-dimensional structures were successfully grown on single crystal Si wafers either bare or Au-covered under their exposure to a pulsed radiation of a Nd:YAG laser in vacuum. The structures protrude above the initial wafer surface for 10 μm while their spatial period is about 70 μm. The coupling of the laser radiation to Si surface is related to the thermal non-linear absorption of the near band gap radiation. The structures exhibit an efficient field emission with an average emission current of 5 mA/cm2 and is sensitive to the post-treatment of samples. The drawbacks of the emission current densities are discussed.  相似文献   

12.
Xing Fan 《Applied Surface Science》2009,255(12):6297-6302
Particles generated by 2.94 μm pulsed IR laser ablation of liquid 3-nitrobenzyl alcohol were irradiated with a 351 nm UV laser 3.5 mm above and parallel to the sample target. The size and concentration of the ablated particles were measured with a light scattering particle sizer. The application of the UV laser resulted in a reduction in the average particle size by one-half and an increase in the total particle concentration by a factor of nine. The optimum delay between the IR and UV lasers was between 16 and 26 μs and was dependent on the fluence of the IR laser: higher fluence led to a more rapid appearance of particulate. The ejection velocity of the particle plume, as determined by the delay time corresponding to the maximum two-laser particle concentration signal, was 130 m/s at 1600 J/m2 IR laser fluence and increased to 220 m/s at 2700 J/m2. The emission of particles extended for several ms. The observations are consistent with a rapid phase change and emission of particulate, followed by an extended emission of particles ablated from the target surface.  相似文献   

13.
The experimental results of a high-power 3.8 μm tunable laser are presented on a quasi-phase-matched single-resonated optical parametric oscillator in PPMgO:CLN pumped by a 1064 nm laser of an elliptical beam. Theoretical analyses of the PPMgO:CLN wavelength tuning are presented. The pump source was an acousto-optical Q-switched cw-diode-side-pumped Nd:YAG laser. The beam polarization matched the e-ee interaction in PPMgO:CLN. When the crystal was operated at 90 °C and the pump power was 150 W with a repetition rate of 10 kHz, average output power of 22.6 W at 3.86 μm and 63 W at 1.47 μm was obtained. The slope efficiency of the 3.86 μm laser with respect to the pump laser was 17.8%. The M2 factors of the 3.86 μm laser were 1.74 and 4.86 in the parallel and perpendicular directions, respectively. The mid-IR wavelength tunability of 3.7-3.9 μm can be achieved by adjusting the temperature of a 29.2 μm period PPMgO:CLN crystal from 200 °C to 30 °C, which basically is accorded with the theoretic calculation.  相似文献   

14.
An originally developed multi-wavelength pyrometer (12 wavelengths in the range 1.001-1.573 μm, 50 μs acquisition time for each photodiode, 800 μm spatial resolution, 900-3500 °C brightness temperature range) is used to measure brightness temperature under the pulsed action of Nd:YAG laser (HAAS-HL62P) on stainless steel (INOX 304L) substrates. Specially developed “notch” filters (10−6 transparency at 1.06 μm wavelength) are applied to avoid the influence of laser radiation on temperature measurements. The true temperature is restored on the basis of method of multi-colour pyrometry. The accuracy of brightness temperature measurements is examined by comparing the temperature evolution for pulses with different durations but with the same value of energy density flux.The influence of the following parameters is studied keeping the remaining ones constant: pulse duration (6-20 ms, rectangular pulse shape), energy per pulse (10-33 J, rectangular pulse shape), pulse shape (three types of triangulars and one rectangular). Finally the evolution of surface temperature for pulses with more complex shapes but with the same pulse duration and energy per pulse is compared.  相似文献   

15.
The microstructural morphological changes in laser irradiated targets are investigated. Nd:YAG laser (1064 nm, ∼12 ns nominal, 1.1 MW) is used to irradiate 4 N pure (99.99%) fine polished and annealed silver samples in ambient air and under vacuum ∼10−6 Torr. The laser spot size and power density at tight focus are 12 μm and 3×1011 W/cm2, respectively. SEM micrographs and X-ray diffractograms of the exposed and unexposed targets reveal the surface texture and structural changes, respectively. Amongst the ablation mechanisms involved, exfoliation and hydrodynamic sputtering are found to be dominant. Surface modifications appear in the form of craters and ripples formation. Heat is conducted non-uniformly through narrow channels at the surface. Thermal stresses induced by the laser do not disturb inter planar distance of the target. On the other hand irradiation causes significant variations in grain size and diffracted X-rays intensities.  相似文献   

16.
High deposition rate, 750 μm/min, crystalline graphite was deposited on WC substrates by a CO2 laser-assisted combustion-flame method at laser powers between 300 and 800 W. The structures, which were identified as pillars, were characterized by various methods. The pillars were cylindrical in shape and grew to a size of approximately 3 mm in length and in a few minutes. The laser power did not affect the overall length of the pillar, but caused changes in the physical shape. X-ray and electron diffraction results revealed the pillars to be crystalline graphite regardless of the laser power. Investigation of the pillars by scanning electron microscopy showed two distinct microstructural areas: an inner core of dense material surrounded by an outer shell of lamellar-like material. The core/shell microstructure was unaffected by the level of CO2 laser power.  相似文献   

17.
New aspects on pulsed laser deposition of aligned carbon nanotubes   总被引:1,自引:0,他引:1  
We have grown carbon nanotubes (CNT) by pulsed laser deposition (PLD) at 1000 °C in Ar atmosphere. A Nd/YAG laser was used for irradiation of a graphite target containing Ni and Co rods. High-resolution scanning electron microscopy (HRSEM) and transmission electron microscopy (TEM) images showed that “closed” carbon nanotubes were grown between clusters of metallic particles, so that the individual nanotubes were arranged in parallel to each other forming a shape of “Rope-Bridge”. The nanotubes structure was analyzed by high-resolution transmission electron microscopy (HRTEM) and their type was found to be of MWNT, containing about five SWNT. Total diameter was 5-20 nm and their length was about 1 μm. High homogeneous distribution carbon nanotubes were grown and different structures were observed such as well-aligned carbon nanotubes, bamboo-like and Y-junction carbon nanotubes.  相似文献   

18.
To obtain metallic nanofingers applicable in surface acoustic wave (SAW) sensors, a mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness)/piezoelectric substrate covered by a spin-coated polymeric mask layer (50-60 nm in thickness) was implemented. The effective shape of cross-section of the before and after etching grooves have been determined by using the AFM tip deconvolution surface analysis, structure factor, and power spectral density analyses. The wet-etching process improved the shape and aspect ratio (height/width) of the grooves and also smoothed the surface within them. We have shown that the relaxed surface tension of the polymeric mask layer resulted in a down limitation in width and length of the lithographed nanofingers. The surface tension of the mask layer can be changed by altering the initial concentration of the polymer in the deposition process. As the surface tension reduced, the down limitation decreased. In fact, an extrapolation of the analyzed statistical data has indicated that by decreasing the surface tension from 39 to 10 nN/nm, the minimum obtainable width and length of the metallic nanofingers was changed from about 55 nm and 2 μm to 15 nm and 0.44 μm, respectively. Using the extrapolation’s results, we have shown that the future SAW sensors buildable by this nanolithography method possess a practical bound in their synchronous frequency (∼58 GHz), mass sensitivity (∼6125 MHz-mm2/ng), and the limit of mass resolution (∼4.88 × 10−10 ng/mm2).  相似文献   

19.
Fabrication of three-dimensional microfluidic channels in glasses by water-assisted ablation with femtosecond laser pulses was investigated. The experimental results showed that formation of the photoinduced microchannels by femtosecond pulses depended on the incident laser power and the scanning speed. For the same scanning speed, the shape of cross-section of channels changed from ellipse to circle with increasing the laser power. Under the optimum condition of laser processing, we fabricated two layers of microfluidic channels with diameter of about 8 μm inside glass. The distance between two layers of microchannels was about 20 μm.  相似文献   

20.
Through-wafer vertical electrical interconnects (vias) with diameters varied from 15 to 80 μm were formed on Si substrates using a UV diode-pumped solid state laser (355 nm). Micro-Raman spectroscopy was employed for the investigation of stress and structural changes induced in silicon within the heat-affected zone due to laser machining. A maximum stress of ∼300 MPa, as a result of laser drilling, was observed close to the via edge. It was found that the stress decays within a distance of 1-3 μm from the via’s side-wall and that the laser machining did not lead to the formation of amorphous silicon around the via structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号