首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A model for carbonization of titanium surface by pulsed Nd:YAG laser was developed. The Ti substrate was covered with a relatively thick graphite layer prior to be processed under the laser beam. The experiments were performed at 15 J pulse energy with various pulse durations and overlapping factor to validate the results obtained from the numerical calculations. The model results such as temperature gradient, surface temperature, and the cooling rate were correlated with the micro-hardness of the alloyed layer. Higher pulse durations and overlapping factors which lead to the heat input increasing will result in significant rising in the micro-hardness values. The hardness values of the processed layer partially containing TiC, increased up to 10 times of the Ti substrate.  相似文献   

2.
In order to realize the qualitative control of the laser-induced changes trend and the quantitative control of the laser-induced changes range in titanium upon laser irradiation with different pulse duration, comparative ablation experiments by femtosecond, picosecond and millisecond pulsed lasers were carried out on titanium in this study. Then the final surface morphology, aspect ratio, chemical composition and microstructural state of the ablated titanium were analyzed by laser scanning confocal microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy, respectively. The dependency of the morphology, size, composition and microstructure of ablated titanium on laser pulse duration variation were emphatically discussed. It is found that, as the laser pulse duration increases from femtosecond to millisecond scale, surface morphology quality of ablated titanium gets worse, aspect ratio of microgroove decreases, proportion of titanium oxides in final ablation products becomes larger and the microstructural state of ablated titanium has a higher amorphization degree, which can be attributed to the decreased laser intensity per pulse and enhanced heat conduction effect in titanium with the pulse duration increasing.  相似文献   

3.
The paper describes the microstructure and properties (microhardness and wear resistance) of the bronze laser alloyed with titanium. The laser alloying was done using a pulsed Nd:YAG laser with a generated beam energy of 25-35 J. A very fine microstructure was formed under such rapid solidification conditions like laser treatment. The high chemical homogeneity and fine structure of the melted zone were attributed to high cooling rates due to the short interaction time with Nd:YAG pulsed laser radiation and relatively small volume of the melted material. The structure obtained in the surface layer after laser alloying permits to get a high level of hardness and an improved wear resistance.  相似文献   

4.
Experimental investigations were carried out to examine the influence of the spot size and peak-power density of a pulsed Nd:YAG laser on the depth of the alloyed layer, the microstructure and the hardness in laser surface alloying of Al with Ni. It was found that the effect of both the peak-power density and the amount of energy absorbed from the laser beam on the depth of the alloyed layer and hardness must be considered simultaneously. In this work, the hardness of the alloyed layer was found to be 10–15 times the value for base Al.  相似文献   

5.
We report on the dependence of a laser radiation induced ablation process of graphite on the applied pulse duration of ultrashort pulsed laser radiation smaller than 4 ps. The emerging so-called non-thermal ablation process of graphite has been confirmed to be capable to physically separate ultrathin graphitic layers from the surface of pristine graphite bulk crystal. This allows the deposition of ablated graphitic flakes on a substrate in the vicinity of the target. The observed ablation threshold determined at different pulse durations shows a modulation, which we ascribe to lattice motions along the c axis that are theoretically predicted to induce the non-thermal ablation process. In a simple approach, the ablation threshold can be described as a function of the energy penetration depth and the absorption of the applied ultrashort pulsed laser radiation. Based on the analysis of the pulse duration dependence of those two determining factors and the assumption of an invariant ablation process, we are able to reproduce the pulse duration dependence of the ablation threshold. Furthermore, the observed pulse duration dependences confirm the assumption of a fast material specific response of graphite target subsequent to optical excitation within the first 2 ps.  相似文献   

6.
Electrical discharge machining of titanium alloy (Ti-6Al-4V)   总被引:4,自引:0,他引:4  
In this study, the electrical discharge machining (EDM) of titanium alloy (Ti-6Al-4V) with different electrode materials namely, graphite, electrolytic copper and aluminium and process parameters such as, pulse current and pulse duration were performed to explore the influence of EDM parameters on various aspects of the surface integrity of Ti6Al4V. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrograph (EDS) and hardness analysis were performed. The experimental results reveal that the value of material removal rate, surface roughness, electrode wear and average white layer thickness are tendency of increase with increasing current density and pulse duration. However, extremely long-pulse durations such as 200 μs led to decrease MRR and surface roughness. Furthermore, the surface hardness is increasing due to the Ti24C15 carbides formed on the surface and obvious cracks are always evident in re-solidified layer when machining copper electrode. The surface crack densities and critical crack lines were determined for the tested material. The graphite electrode is beneficial on material removal rate, electrode wear and surface crack density but relatively poorer surface finish.  相似文献   

7.
Composite coatings mainly containing titanium carbides and borides were produced by laser surface alloying of Ti-6Al-4V with graphite and boron mixed powders. The test results show that the coatings have higher hardness (1600-1700 HV0.1) and are more resistant to wear than the as-received sample. Laser scanning speed and the content of alloying elements (weight ratio of graphite to boron) have an effect on both the microstructure and the wear resistance of the coatings. TEM results show that strip titanium carbides and borides grow alternately and thus restrain the formation of coarse needle-like TiB and dendritic TiC crystals produced by laser alloying of titanium alloys with boron and graphite separately.  相似文献   

8.
Laser–ablation techniques have been widely applied for removing material from a solid surface using a laser–beam irradiating apparatus. This paper presents a surface–texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser–scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser–textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.  相似文献   

9.
Laser-induced breakdown spectroscopy (LIBS) was applied for parametric studies of titanium (Ti) plasma using single and double pulsed laser excitation scheme. Here a pulsed Nd:YAG laser was employed for generation of laser produced plasma from solid Ti target at ambient pressure. Several ionized titanium lines were recorded in the 312–334 nm UV region. The temporal evolution of plasma parameters such as excitation temperature and electron number density was evaluated. The effect of incident laser irradiance, position of the laser beam focal point with respect to the surface of illumination, single and double laser pulse effect on plasma parameters were also investigated. This study contributes to a better understanding of the LIBS plasma dynamics of the double laser pulse effect on the temporal evolution of various Ti emission lines, the detection sensitivity and the optimal dynamics of plasma for ionized states of Ti. The results demonstrate a faster decay of the continuum and spectral lines and a shorter plasma life time for the double pulse excitation scheme as compared with single laser pulse excitation. For double pulse excitation technique, the emissions of Ti lines intensities are enhanced by a factor of five which could help in the improvement of analytical performance of LIBS technique. In addition, this study proved that to avoid inhomogeneous effects in the laser produced plasma under high laser intensities, short delay times between the incident laser pulse and ICCD gate are required.  相似文献   

10.
为了增强Ti6Al4V钛合金的耐磨性,采用激光沉积制造方法在其表面上制备了以原位生成的TiC颗粒和直接添加的WC颗粒为增强相的耐磨涂层,观察了各涂层的微观组织,并测量了涂层的显微硬度和涂层在室温大气条件下的摩擦磨损性能。结果表明各涂层和基体呈现冶金结合,原位自生的TiC和部分熔化的WC颗粒均能够均匀弥散分布于基体上,由于增强相颗粒的弥散强化及激光沉积组织的细晶强化作用,基材的硬度和耐磨性均得到了提高。原位自生的TiC涂层比WC涂层硬度梯度分布平缓,但耐磨性稍差。  相似文献   

11.
Protective coatings with hard metal-like wear properties could be obtained by laser beam surfacing of powder mixtures consisting of coarse-grained tungsten carbide and a nickel or cobalt hard alloy. The microstructure of the clad composite layers was investigated by metallography and SEM. The four coating systems produced were found to differ strongly in the degree of partial carbide dissolution and the formation of new hard phases. This also influences the hardness and wear behaviour.  相似文献   

12.
The effects of main laser parameters,such as pulse energy,pulse duration,frequency,and work time on laser propulsion of "air-breathing mode",are investigated experimentally with a high power and high repetition frequency TEA-CO2 pulsed laser.The results show that the momentum coupling coefficient Cm decreases with increasing the pulse energy for single pulse tests and pulse duration of about 1μs.Either higher or lower frequency will reduce Cm in multi-pulse tests,which suggests an optimal frequency for the maximum Cm.As to the work time,the longer the work time is,the less the Cm will be.  相似文献   

13.
The surface hardness of titanium modified by laser irradiation at different wavelengths in nitrogen atmosphere was investigated. Further, surface characteristics such as morphology, chemical state, and chemical composition in the depth direction were also studied. The size and depth of the craters observed in the laser-irradiated spots increased monotonically with an increase in the laser power. Furthermore, the crater formed by the 532-nm laser was deeper than that formed by the 1064-nm laser for the same laser power. Laser power beyond a certain threshold value was required to obtain a titanium nitride layer. When the laser power exceeds the threshold value, a titanium nitride layer of a few tens of nanometers in thickness was formed on the substrate, whereas a titanium oxide layer containing small amounts of nitrogen was formed when the laser power is below the threshold value. Thus, it was shown that laser irradiation using appropriate laser parameters can successfully harden a titanium substrate, and the actual hardness of the titanium nitride layer, measured by nanoindentation, was approximately five times that of an untreated titanium surface.  相似文献   

14.
15.
Surface nitriding of a Ti–6Al–4V alloy by laser melting in a flow of nitrogen gas has been investigated, with the aim of increasing surface hardness and hence improving related properties such as wear and erosion resistance. The effect of the scanning speed, nitrogen dilution, and nitrogen flow rate on microstructure, microhardness, and cracking of the nitrided layers was studied. Optical, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction (XRD) were used to reveal the microstructure and to identify the phases formed. It is shown that smooth, deep, and crack-free nitride layers of a surface hardness ranging between 500 and 800 HV can be obtained by controlling the processing parameters. Cracks are present in the sample processed at slow scanning speed and high laser power. Dilution of the nitrogen gas with argon gas leads to a crack-free nitride layer at the expense of a reduction in surface hardness. Slow scanning speeds lead to the formation of a deep and hard surface layer, and increasing the nitrogen flow rate results in a rough surface with a slight increase in hardness.  相似文献   

16.
A model-based optimisation of the process of printed circuit board laser structuring is presented. For this purpose, a comprehensive theoretical model of the interaction between the travelling pulsed laser beam and conductive layer, as well as between the laser beam and the induced plasma plume is employed. The model is used to calculate process speed. Based on the process speed determined, the influence of pulse power, duration, and frequency on process speed is analysed. In addition, an optimal range of process parameters with respect to process speed and quality is defined.  相似文献   

17.
采用脉冲泵浦方案,研制出了基于增益调制技术的全光纤结构高重频脉冲激光器。采用电路直接调制的激光二极管作为泵浦源,双包层光纤作为增益介质,构造了光纤光栅选模的线形腔结构。实验中通过调整泵浦光脉冲宽度和光纤激光器谐振腔长度,得到了稳定的高重频脉冲。在100kHz重复频率下,采用21W的峰值泵浦功率和2.5μs的泵浦脉冲宽度,获得了1.06μm波长,脉冲宽度247ns的稳定脉冲激光输出。脉冲峰值功率一致性好,平均功率长期功率稳定性为2%。观察并分析了由于纵模拍频在脉冲包络上产生的次脉冲特性。通过一级放大实现89.6 W输出。  相似文献   

18.
Surface modification of AISI316 stainless steel by laser melting was investigated experimentally using 2 and 4 kW laser power emitted from a continuous wave CO2 laser at different specimen scanning speeds ranged from 300 to 1500 mm/min. Also, an investigation is reported of the introduction of carbon into the same material by means of laser surface alloying, which involves pre-coating the specimen surfaces with graphite powder followed by laser melting. The aim of these treatments is to enhance corrosion resistance by the rapid solidification associated with laser melting and also to increase surface hardness without affecting the bulk properties by increasing the carbon concentration near the surface. Different metallurgical techniques such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize the microstructure of the treated zone. The microstructures of the laser melted zones exhibited a dendritic morphology with a very fine scale with a slight increase in hardness from 200 to 230 Hv. However, the laser alloyed samples with carbon showed microstructure consisting of γ dendrite surrounded by a network of eutectic structures (γ+carbide). A significant increase in hardness from 200 to 500 Hv is obtained. Corrosion resistance was improved after laser melting, especially in the samples processed at high laser power (4 kW). There was shift in Icorr and Ecorr toward more noble values and a lower passive current density than that of the untreated materials. These improvements in corrosion resistance were attributed to the fine and homogeneous dendritic structure, which was found throughout the melted zones. The corrosion resistance of the carburized sample was lower than the laser melted sample.  相似文献   

19.
Multicarbide reinforced metal matrix composite (MMC) layers on a ductile iron (QT600-3) were fabricated by laser surface alloying (LSA) using two types of laser: a 5 kW continuous wave (CW) CO2 laser and a 400 W pulsed Nd:YAG laser, respectively. The research indicated that LSA of the ductile iron with multicarbide reinforced MMC layers demonstrates sound alloying layers free of cracks and porosities. The microstructure, phase structure and wear properties of MMC layers were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), as well as dry sliding wear testing. The microstructure of the alloyed layer is composed of pre-eutectic austenite, ledeburite, spherical TiC, Cr7C3 and Cr23C6 with various morphologies. TiC particles are dispersed uniformly in the upper region of MMC layers. The average hardness of LSA layers by CO2 laser and pulsed Nd:YAG laser is 859 HV0.2 and 727 HV0.2, respectively. The dry sliding wear testing shows the wear resistance of ductile iron is significantly improved after LSA with multicarbide.  相似文献   

20.
Surface characteristic of stainless steel sheet after pulsed laser forming   总被引:1,自引:0,他引:1  
Laser forming is a non-contact and die-less forming technique of producing bending, spatial forming, modifying and adjusting the curvature of the metallic sheet by using the controlled laser beam energy. One of the problems in laser forming is controlling the characteristic of laser scanned surface. The aim of the investigation is to explore the relation between the surface behaviors of heat affected zone (HAZ) scanned by pulse laser and the pulse parameters of the laser. This paper illustrated the fundamental theory of pulsed laser affected material, and pays attention to the microstructure, micro-hardness and the anticorrosion in the HAZ generated by the laser scanning. Metallographic microscope, scanning electron microscope (SEM), micro-hardness testing system are used to examine the surface characteristics. The work presented in this paper is beneficial to understand the mechanism of pulse laser affect to materials and improve controlling the surface behaviors scanned by pulsed laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号