首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Gas turbines, liquid rocket motors, and oil-fired furnaces utilize the spray combustion of continuously injected liquid fuels. In most cases, the liquid spray is mixed with an oxidizer prior to combustion, and further oxidizer is supplied from the outside of the spray to complete diffusion combustion. This rich premixed spray is called “partially premixed spray.” Partially premixed sprays have not been studied systematically although they are of practical importance. In the present study, the burning behavior of partially premixed sprays was experimentally studied with a newly developed spray burner. A fuel spray and an oxidizer, diluted with nitrogen, was injected into the air. The overall equivalence ratio of the spray jet was set larger than unity to establish partially premixed spray combustion. In the present burner, the mean droplet diameter of the atomized liquid fuel could be varied without varying the overall equivalence ratio of the spray jet. Two combustion modes with and without an internal flame were observed. As the mean droplet diameter was increased or the overall equivalence ratio of the spray jet was decreased, the transition from spray combustion only with an external group flame to that with the internal premixed flame occurred. The results suggest that the internal flame was supported by flammable mixture through the vaporization of fine droplets, and the passage of droplet clusters deformed the internal flame and caused internal flame oscillation. The existence of the internal premixed flame enhanced the vaporization of droplets in the post-premixed-flame zone within the external diffusion flame.  相似文献   

2.
Yu X  Peng J  Sun R  Yi Y  Yang P  Yang X  Wang C  Zhao Y  Chen D 《Optics letters》2011,36(10):1930-1932
We first research the effects of femtosecond-laser-induced plasma (FLIP) on a laminar premixed methane/oxygen/nitrogen flame speed with a wide range of equivalence ratios (0.8-2.0) at atmospheric pressure. It is experimentally found that the flame speed increases by 30.8% at equivalence ratio 1.33, and the effects of the FLIP on the flame speed are more remarkable when the methane is rich. The self-emission spectra from the flame and the plasma are studied, and the presence of the oxygen atom is likely to be a key factor in enhancing flame speed.  相似文献   

3.
Numerical and experimental investigations of unconfined methane-oxygen laminar premixed flames are presented. In a lab-scale burner, premixed flame experiments have been conducted using pure methane and pure oxygen mixtures having different equivalence ratios. Digital photographs of the flames have been captured and the radial temperature profiles at different axial locations have been measured using a thermocouple. Numerical simulations have been carried out with a C2 chemical mechanism having 25 species and 121 reactions and with an optically thin radiation sub-model. The numerical results are validated against the experimental and numerical results for methane-air premixed flames reported in literature. Further, the numerical results are validated against the results from the present methane-oxygen flame experiments. Visible regions in digital flame photographs have been compared with OH isopleths predicted by the numerical model. Parametric studies have been carried out for a range of equivalence ratios, varying from 0.24 to 1.55. The contours of OH, temperature and mass fractions of product species such as CO, CO2 and H2O, are presented and discussed for various cases. By using the net methane consumption rate, an estimate of the laminar flame speed has been obtained as a function of equivalence ratio.  相似文献   

4.
高光谱技术提供了空间和光谱维度的信息,同时基于传统黑体模型的实验技术和计算方法不适用于甲烷火焰的辐射特性,而火焰中自由基的高光谱信息反映了火焰结构、组分浓度分布等燃烧的多方面特征,能够为燃烧模型的完善提供依据。利用高光谱技术在不同当量比和不同流量下研究了甲烷预混火焰中自由基的空间和光谱特性。对不同当量比的研究表明,随着当量比的增加,火焰中心处的CH*和C*2自由基的辐射强度先增加后降低,而燃烧区域内二者的平均辐射强度一直增加,火焰中心处的点可以表征局部的燃烧状态,而燃烧区域内辐射均值表征热释率等整体燃烧状态,定量给出了两种方法的不同趋势。火焰中心处的CH*自由基辐射强度在当量比为1.01时达到峰值,而C*2自由基辐射强度在当量比为1.12时达到峰值,两种自由基的辐射峰值可以分别作为燃烧中反应强度和稳定性的判据。当量比可以由C*2和CH*辐射强度之比来表征,修正了C*  相似文献   

5.
In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane–air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach–Zehnder interferometry. Different equivalence ratios (φ=1.4–2.2) and Reynolds numbers (Re=100–1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.  相似文献   

6.
超声速预混可燃气流的点火与燃烧   总被引:3,自引:0,他引:3  
在激波风洞一激波管组合设备上开展了碳氢燃料超声速预混可燃气流的点火与燃烧实验研究。实验结果表明:利用激波对燃料进行预热,并以高温燃气作为引导火焰,可以有效缩短汽油空气超声速可燃混气的点火延迟时间,使之缩短到 0.2 ms以下。利用纹影照片对超声速燃烧流场结构作出了分析;研究了超声速预混可燃气流的温度以及当量比对超声速燃烧流场结构、点火与火焰传播特性的影响。  相似文献   

7.
In this paper we report the investigation of the laser-induced breakdown and ignition behaviour of methane/air and dimethyl ether (DME)/air mixtures. Moreover, the optical emission from the induced plasma is utilized for determining the mixture composition quantitatively by means of laser-induced breakdown spectroscopy (LIBS). To the best of the authors’ knowledge, LIBS and laser ignition of DME have not been reported in literature before. The technique under investigation is finally employed for combustion diagnostics in laminar as well as turbulent flames. In the laminar premixed and non-premixed flames the LIBS spectra allow spatially resolved measurements of the equivalence ratio and enable studying the mixing of gases provided through the burner with the surrounding room air. In addition, the breakdown threshold of the applied laser pulse energy yields an estimate for the local temperature. In the turbulent cases single-shot LIBS spectra are recorded at fixed position allowing the derivation of local statistical fluctuations of the equivalence ratio in partially premixed jet flames. The results show that laser-induced breakdowns have a strong potential for flame diagnostics and, under suitable conditions, for the ignition of combustible mixtures.  相似文献   

8.
OH*自由基是火焰中主要的激发态自由基之一,它所产生的化学发光可用于描述火焰的结构、拉伸率、氧燃当量比和热释放速率等特征信息,因此被广泛应用于火焰燃烧状态的在线诊断。以甲烷/氧气层流同轴射流扩散火焰作为研究对象,采用GRI-Mech 3.0机理结合OH*自由基生成和淬灭反应进行数值计算,对OH*自由基的二维分布特性进行研究,分析不同区域内OH*自由基的生成路径,并探讨不同氧燃当量比例和不同喷嘴出口尺寸对OH*自由基强度和分布特性的影响。模拟结果与实验研究基本吻合,表明计算模型能够准确描述火焰中OH*自由基的二维分布。结果表明:在甲烷/氧气层流同轴射流扩散火焰中,OH*自由基存在两种不同形态的分布区域,分别由反应CH+O2=OH*+CO和H+O+M=OH*+M生成;随着氧燃当量比提高,OH*自由基的分布区域逐渐向火焰下游扩张,根据其分布形态的变化可以对火焰燃烧状况进行判断;如果OH*自由基仅分布于火焰的上游区域且呈断开形态,则说明火焰处于贫氧燃烧状态。如果OH*分布呈环状形态,则说明火焰处于富氧燃烧状态;相同氧气流量条件下,缩小喷嘴出口的环隙尺寸有助于加强燃料和氧气的化学反应程度,从而使火焰中OH*自由基的摩尔分数显著提高,增强OH*化学发光的辐射强度,提高火焰光谱诊断的准确性。  相似文献   

9.
Ammonia (NH3) direct combustion is attracting attention for energy utilization without CO2 emissions, but fundamental knowledge related to ammonia combustion is still insufficient. This study was designed to examine effects of radiation heat loss on laminar ammonia/air premixed flames because of their very low flame speeds. After numerical simulations for 1-D planar flames with and without radiation heat loss modeled by the optically thin model were conducted, effects of radiation heat loss on flame speeds, flame structure and emissions were investigated. Simulations were also conducted for methane/air mixtures as a reference. Effects of radiation heat loss on flame speeds were strong only near the flammability limits for methane, but were strong over widely diverse equivalence ratios for ammonia. The lower radiative flame temperature suppressed the thermal decomposition of unburned ammonia to hydrogen (H2) at rich conditions. The equivalence ratio for a low emission window of ammonia and nitric oxide (NO) in the radiative condition shifted to a lower value than that in the adiabatic condition.  相似文献   

10.
A three mixture fraction flamelet model is proposed for multi-stream laminar pulverized coal combustion. The technique of coordinate transformation is utilized to map the flamelet solutions from a unit pyramid space into a unit cubic space to improve the stability of the simulation. The validity of the three mixture fraction flamelet model was assessed on different configurations, including a laminar counterflow pulverized coal/methane flame and a laminar piloted pulverized coal jet flame. The flamelet predictions were compared to the reference results of the detailed chemistry solutions. For the counterflow flame, it was found that the flame temperature and major species mass fractions are correctly predicted by the three mixture fraction flamelet model. However, discrepancies are observed for combustion-mode-sensitive species such as CO and H2 in the premixed combustion region. The thermo-chemical quantities in the char surface reaction zone cannot be correctly predicted if the mixing between the char off-gas stream and other streams is neglected. For the piloted jet flame, it was shown that the stable thermo-chemical variables can be correctly predicted at the upper and middle stream locations. However, at the downstream location, discrepancies can be observed in certain regions. Overall, the validity of the three mixture fraction flamelet model for multi-stream pulverized coal combustion is confirmed and its performance in turbulent pulverized coal combustion will be tested in future work.  相似文献   

11.
A numerical study of one-dimensional n-heptane/air spray flames is presented. The objective is to evaluate the flame propagation speed in the case where droplets evaporate inside the reaction zone with possibly non-zero relative velocity. A Direct Numerical Simulation approach for the gaseous phase is coupled to a discrete particle Lagrangian formalism for the dispersed phase. A global two-step n-heptane/air chemical mechanism is used. The effects of initial droplet diameter, overall equivalence ratio, liquid loading and relative velocity between gaseous and liquid phases on the laminar spray flame speed and structure are studied. For lean premixed cases, it is found that the laminar flame speed decreases with increasing initial droplet diameter and relative velocity. On the contrary, rich premixed cases show a range of diameters for which the flame speed is enhanced compared to the corresponding purely gaseous flame. Finally, spray flames controlled by evaporation always have lower flame speeds. To highlight the controlling parameters of spray flame speed, approximate analytical expressions are proposed, which give the correct trends of the spray flame propagation speed behavior for both lean and rich mixtures.  相似文献   

12.
Traditionally, research has focused on positive stretch in the stagnation flow and negative stretch along the Bunsen flame. Only a very limited amount of research has been devoted to studying the behavior of a conical Bunsen flame established in a stagnation flow, which is significantly affected by the combined effects of the curvature stretch and the aerodynamic straining. This investigation is aimed at studying the characteristics of laminar conical premixed flames in an impinging jet flow experimentally and theoretically. First, we analyze the transport processes of a nonreactive impinging jet flow numerically. For lower burner-to-plate distance, the potential core becomes concave at the top. Hence, a conical Bunsen flame established in such a flow field may suffer positive flow stretch. The predicted flame shapes using a simple model incorporated with the numerical results agree well with the experimental observations. Flame shapes exhibit double-solution characteristics in a certain range of methane concentrations. Experimentally, by following different paths of adjusting methane concentration (decreasing from rich to lean or increasing from lean to rich), two different flame configurations (planar or conical flame) may exist at the same flow conditions, namely burner-to-plate distance, inlet velocity, and methane concentration. At the higher (or lower) critical methane concentration, the transition from a flat flame to a conical flame (or from a conical flame to a flat flame) occurs. The calculation of stretch and measurement of flame temperature for the low inlet velocity, 0.8 m/s, show that the stretch of a conical flame established in a stagnation flow is negative (dominated by the flame curvature). However, it is important to emphasize that at high velocity, e.g., Uin = 1.6 m/s, a negatively stretched flame tip can suffer positive flow stretch. This significant finding has been verified in the experiment since the conical flame tip is higher than the positively stretched flat flame.  相似文献   

13.
Multiple flame regimes are encountered in industrial combustion chambers, where premixed, stratified and non-premixed flame regions may coexist. To obtain a predictive tool for pollutant formation predictions, chemical flame modeling must take into account the influence of such complex flame structure. The objective of this article is to apply and compare two reduced chemistry models on both laminar and turbulent multi-regime flame configurations in order to analyze their capabilities in predicting flame structure and CO formation. The challenged approaches are (i) a premixed flamelet-based tabulated chemistry method, whose thermochemical variables are parameterized by a mixture fraction and a progress variable, and (ii) a virtual chemical scheme which has been optimized to retrieve the properties of canonical premixed and non-premixed 1-D laminar flames. The methods are first applied to compute a series of laminar partially-premixed methane-air counterflow flames. Results are compared to detailed chemistry simulations. Both approaches reproduced the thermal flame structure but only the virtual chemistry captures the CO formation in all ranges of equivalence ratio from stoichiometry premixed flame to pure non-premixed flame. Finally, the two chemical models combined with the Thickened Flame model for LES are challenged on a piloted turbulent jet flame with inhomogeneous inlet, the Sydney inhomogeneous burner. Mean and RMS of temperature and CO mass fraction radial profiles are compared to available experimental data. Scatter data in mixture fraction space and Wasserstein metric of numerical and experimental data are also studied. The analyses confirm again that the virtual chemistry approach is able to account for the impact of multi-regime turbulent combustion on the CO formation.  相似文献   

14.
Rich premixed turbulent n-dodecane/air flames at diesel engine conditions are analyzed using direct numerical simulations. The conditions correspond to a parametric variation of the Engine Combustion Network Spray A (pressure 60 atm; oxidizer oxygen level and temperature 21% and 900 K, respectively; fuel temperature 363 K). Three simulations with equivalence ratios of 3, 5, and 7 are performed with a Karlovitz number (Ka, based on flame time) of order 100 to match the estimated Ka of the rich premixed combustion region in Spray A. At these conditions, the reference laminar flames exhibit a complex structure which involves both low-temperature chemistry (LTC) and high-temperature chemistry over a wide range of length scales. In the presence of turbulence, the flame structure is strongly affected in physical space and the reaction zone exhibits a very complex structure in which broken, distributed, and thin regions co-exist, especially for the leanest case. However, the contribution of the LTC pathway is only weakly affected by turbulence. In progress variable space, the mean flame structure, including the chemical source terms, is found to match remarkably well that of the corresponding unity Lewis number laminar flame, particularly for the ?= 3 and 5 cases. This behavior is attributed to the strong turbulent mixing occurring throughout the flames/reaction zones, which suppresses differential diffusion effects. Nevertheless, large conditional fluctuations around the mean chemical source terms are identified. These are found to correlate very well with radical species mass fractions such as OH. In addition, a similar functional dependence is obtained from counterflow laminar flames. As such, it appears from these results that laminar flame models have a potential to be used to represent the thermochemical state of rich premixed turbulent flames under diesel engine conditions.  相似文献   

15.
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane–air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. ‘Back supported’ lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.  相似文献   

16.
在Rijke管产生的强迫脉动驻波声场下,以甲烷层流部分预混火焰为研究对象,比较了脉动燃烧与稳态燃烧下NOx随当量比的变化规律,结合微细热电偶、火焰探针,讨论了火焰内部温度场和组分浓度变化,分析了脉动燃烧下NOx降低机理。结果表明脉动燃烧下甲烷部分预混火焰的NOx降低,其主要机理为:脉动燃烧下火焰的峰值温度低,温度分布均...  相似文献   

17.
In the present work, direct numerical simulation (DNS) of a laboratory-scale lean premixed reacting jet flame in crossflow was performed to understand the flame structures and the flame stabilization mechanism. In the DNS, an ethylene-air jet with an equivalence ratio of 0.6 was injected into a hot vitiated crossflow. The jet Reynolds number reaches 6161. The DNS results were compared with those of the experiment with a good agreement. It was found that the windward and leeward branches of the flame show significantly different behaviors. The windward flame branch, appearing lifted and discontinuous, is located in the shear layer regions with high temperature, low vorticity and low scalar dissipation rate. The location of the peak heat release rate shifts to a higher mixture fraction with increasing distance from the jet exit. The leeward branch of the flame anchors in the shear layer near the jet exit. The recirculation zone in the wake of the jet facilitates the stabilization of the leeward flame. The chemical explosive mode analysis (CEMA) and species budget analysis were employed to characterize the local combustion mode. Auto-ignition plays a key role in the stabilization of the windward flame where a large range of extinction is also found due to the high strain rate. In contrast, premixed flame propagation is dominant on the leeward side.  相似文献   

18.
湍流分层燃烧广泛应用于工业燃烧装置,但是目前还比较缺乏适用于湍流分层燃烧的高精度数值模型。本文利用直接数值模拟数据库,对高Karlovitz数分层射流火焰的小火焰模型表现进行了先验性评估。考虑了两种小火焰模型,一种是基于自由传播层流预混火焰的小火焰模型M1,另一种是基于分层对冲小火焰的小火焰模型M2。研究发现M1和M2在c-Z空间的结果与直接数值模拟在定性上是一致的。在物理空间,M2对过程变量反应速率脉动值的预测结果要优于M1.  相似文献   

19.
In our previous numerical studies [Nishioka Makihito, Zhenyu Shen, and Akane Uemichi. “Ultra-lean combustion through the backflow of burned gas in rotating counterflow twin premixed flames.” Combustion and Flame 158.11 (2011): 2188–2198. Uemichi Akane, and Makihito Nishioka. “Numerical study on ultra-lean rotating counterflow twin premixed flame of hydrogen–air.” Proceedings of the Combustion Institute 34.1 (2013): 1135–1142]. we found that methane– and hydrogen–air rotating counterflow twin flames (RCTF) can achieve ultralean combustion when backward flow of burned gas occurs due to the centrifugal force created by rotation. In this study, we investigated the mechanisms of ultralean combustion in these flames by the detailed numerical analyses of the convective and diffusive transport of the main species. We found that, under ultralean conditions, the diffusive transport of fuel exceeds its backward convective transport in the flame zone, which is located on the burned-gas side of the stagnation point. In contrast, the relative magnitudes of diffusive and convective transport for oxygen are reversed compared to those for the fuel. The resulting flows for fuel and oxygen lead to what we call a ‘net flux imbalance’. This net flux imbalance increases the flame temperature and concentrations of active radicals. For hydrogen–air RCTF, a very large diffusivity of hydrogen enhances the net flux imbalance, significantly increasing the flame temperature. This behaviour is intrinsic to a very lean premixed flame in which the reaction zone is located in the backflow of its own burned gas.  相似文献   

20.
We report on the development of planar laser-induced fluorescence (PLIF) for CH imaging with improved detection sensitivity for single-shot investigations of turbulent, lean, premixed flames. A ring-cavity, pulsed Alexandrite laser was frequency-doubled to excite the lines in the R-branch band-head of the B-X (0,0) band and broadband fluorescence from the B-X (0,1), A-X (1,1) and (0,0) bands, overlapping in the spectral range around 431 nm, was collected. The employed Alexandrite laser, which is characterized by its long pulse duration (150 ns), gives a tunable laser beam around 775 nm with a pulse energy for the second harmonic at the CH absorption wavelength of about 70 mJ. Moreover, the laser has the possibility to be operated in narrow bandwidth (100 MHz) or broad bandwidth (8 cm−1). An introductory high resolution excitation scan over the R-branch band-head was performed and, in addition, saturated excitation with the broadband option of the laser was investigated. By simultaneous excitation of several rotational transitions and to bring these transitions close to saturation, high signal-to-noise ratios were reached over a wide range of equivalence ratios. A sharp and thin CH layer was observed in single-shot PLIF images from laminar premixed methane/air flames from Φ = 0.6 to Φ = 1.5. Finally, the impact of the developed CH PLIF technique is demonstrated in a highly turbulent, lean, partially premixed methane/air flame established on a co-axial jet flame burner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号