首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The upconversion luminescence spectral intensity of Er3+ in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ are investigated. Yb3+ ions as a tradition sensibilizer have efficient energy transfer processes from Yb3+ (2F5/2) to Er3+ (4I13/2, 4I11/2, 4F9/2), which lead to the increment of upconversion luminescence intensity. Following by adding Li+ to the Er3+ and Yb3+ codoped ZnO nanocrystals, the upconversion intensity emitted by Er3+ ions is found greatly enhanced. The enhancement is attributed to the distortion of the local field symmetry of Er3+ ions, so increases various intra-4f transitions of Er3+ ions. Both Yb3+ and Li+ can disperse Er3+ ions in specimen, so reduced the interaction between neighboring Er3+ ions.  相似文献   

2.
Yb3+ and Er3+ co-doped YAB powders were prepared by sol-gel method. The structure and fluorescence properties were investigated. XRD pattern indicated that the single phase was obtained at 1150°C and the structure belonged to rhombohedral. Under 379 nm excitation, two emissions around 983 nm and 1531 nm were observed and the effect of Yb3+ ion concentration on the emission intensity was discussed. The energy transfer was observed under 930 nm excitation and the energy transfer efficiencies for all samples were calculated. The lifetimes of 2 F 5/2 level of Yb3+ ion and 4 I 13/2 level of Er3+ ion were measured and the effect of Yb3+ ion concentration on the lifetime was also discussed. The results indicated that there was an additional mechanism for the decay of 4 I 13/2 level in powder samples. The Yb3+ and Er3+ co-doped YAB powders should be a potential candidate for ceramic laser materials.  相似文献   

3.
The ZrO2:Er3+ codoped with Yb3+ phosphor powders have been prepared by the urea combustion route. Formation of the compounds ZrO2:Er3+ and ZrO2:Er3+, Yb3+ was confirmed by XRD. The frequency upconversion emissions in the green and red regions upon excitation with a CW diode laser at ~978 nm are reported. Codoping with Yb3+ enhances the emission intensities of the triply ionized erbium in the green and red spectral regions by about ~130 and ~820 times respectively. The emission properties of the ZrO2:Er3+ phosphor powders are discussed on the basis of excited state absorption, energy transfer, and cross-relaxation energy transfer mechanisms.  相似文献   

4.
Er,Yb:YAG微晶玻璃发光特性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
高温熔制Er3+,Yb3+离子掺杂CaO-Y2O3-Al2O3-SiO2系统玻璃,并进行微晶化处理,研究了微晶玻璃中Er3+离子的发光及上转换发光特性,分析了微晶玻璃上转换发光机理.结果表明:原始玻璃经热处理得到了Er,Yb:YAG微晶玻璃,微晶玻璃中Er3+离子在室温下4I13/24I15/2跃迁产生横盖1450—1650nm区间的超宽带荧光,荧光半高宽达180nm,这可能由于YAG微晶相中Er3+离子与玻璃相中残留Er3+离子的共同发光;Er3+与Yb3+离子局域基质声子能量的降低使微晶玻璃Er3+离子上转换发光强度与原始玻璃相比显著提高,绿光、红光上转换荧光强度比玻璃样品分别增强约7和3倍;微晶化后Er3+,Yb3+离子局域环境发生变化也导致微晶玻璃中Er3+离子绿光、红光上转换发光相对强度发生变化. 关键词: 铒 镱:钇铝石榴石 微晶玻璃 荧光光谱  相似文献   

5.
We have prepared Er3+/Yb3+ co-doped transparent phosphate glass ceramics by the high-temperature melting technique, and demonstrated the influence of energy acceptors Ce3+ ions on the up-conversion and 1.54 μm emission properties of Er3+. The energy transfer mechanism is discussed based on the energy matching and the energy level structure. The phonon-assisted energy transfer between Er3+ and Ce3+ favors population feeding from the 4I11/2 to the 4I13/2 level, and therefore drastically decreases the up-conversion emission intensity of Er3+. Meanwhile, 1.54 μm fluorescence enhances greatly with the introduction of Ce3+ ions at the proper concentration.  相似文献   

6.
Transparent phosphate glass ceramics co-doped with Er3+ and Yb3+ in the system P2O5Li2OCaF2TiO2 were successfully synthesized by melt-quenching and subsequent heating. Formation of the nanocrystals was confirmed by X-ray powder diffraction. Judd–Ofelt analyses of Er3+ ions in the precursor glasses and glass ceramics were performed to evaluate the intensity parameters Ω2,4,6. Under 975 nm excitation, intense upconversion (UC) and infrared emission (1545 nm) were observed in the glass ceramics by efficient energy transfer from Yb3+ to Er3+. The luminescence processes were explained and the emission cross section was calculated by Fuchtbauer–Ladenburg (F–L) formula. The results confirm the potential applications of Er3+/Yb3+ co-doped glass ceramics as laser and fiber amplifier media.  相似文献   

7.
Up-conversion luminescence and energy transfer (ET) processes in Nd3+-Yb3+-Er3+ triply doped TeO2-ZnO-Na2O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er3+: 4S3/24I15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er3+ singly doped and Er3+-Yb3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb2O3-concentration and Nd2O3-concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd3+, Yb3+ and Er3+. And a possible up-conversion mechanism based on sequential ET from Nd3+ to Er3+ through Yb3+ is proposed for green and red up-conversion emission processes.  相似文献   

8.
Ledig  M.  Heumann  E.  Ehrt  D.  Seeber  W. 《Optical and Quantum Electronics》1990,22(1):S107-S122

Sensitization of the fluorescence of Er3+ in fluoride phosphate glass containing up to 20 mol% phosphates by codoping with Cr3+ and Yb3+ is shown. The low order of ligand field strength for Cr3+ (Dq/B=2.04) results in broad Cr3+ fluorescence overlapping the Yb3+ absorption. The electronic energy transfer efficiency approaches 100%. Deviations of donor decay from the Förster law are interpreted in terms of the inhomogeneously acceptor distribution. The electronic energy transfer efficiency of Yb3+ → Er3+ reaches a maximum value of 75% for glasses containing 20 mol% phosphates. The transfer is shown to be migrationally accelerated by means of GAF-LAF-FB theory. From Judd-Ofelt parameters a stimulated emission cross-section for the transition4I13/24I15/2 of Er3+ of 6.2×10−20 cm2 is derived. The c.w. laser action of Er3+ by Cr3+ excitation and double-step energy transfer is shown. The output is tuned continuously from 1536 to 1596 nm. Flashlamp pumping is also shown.

  相似文献   

9.
The Yb3+ to Er3+ energy transfer in yttrium aluminum borate (YAB) crystal is investigated with the rate equation without considering the back energy transfer. The energy transfer coefficients (W25) in the crystals with different Yb3+ concentrations are determined and compared with those in other crystals. The transfer efficiencies and the micro-parameters of energy transfer and migration are also determined. The results show that the energy transfer from Yb3+ to Er3+ in YAB crystal is very efficient and the Yb3+–Er3+ co-doped YAB crystal may be a good candidate for the 1.55 μm laser media.  相似文献   

10.
GdVO4 single crystal co-doped with Yb3+ and Er3+ was grown by the Czochralski method. The X-ray powder diffraction pattern of Yb,Er:GdVO4 crystal confirms that the as-grown crystal is isostructural with pure GdVO4 crystal. Its polarized absorption spectra and non-polarized fluorescence spectra were measured at room temperature. The absorption band at 984 nm for π-polarization has an FWHM of about 36 nm, which is favorable for InGaAs LD laser pumping. The spectrum properties of Er3+ in Yb,Er:GdVO4 crystal were investigated based on Judd–Ofelt theory. There is strong energy transfer from Yb3+ to Er3+ in this crystal. When excited with 980 nm radiation, this crystal emitted strong fluorescence at about 1529 nm and 552.5 nm. The total energy transfer rate and efficiency from Yb3+ to Er3+ is 3.33 ms-1 and 67%, respectively. The energy transfer between Er3+ and Yb3+ ions is a multistep transfer process, and was investigated based on a random-walk model. The investigation result shows that there is strong cooperative-sensitization effect from Yb3+ to Er3+, which is the main upconversion energy-transfer process in this crystal. PACS 42.70.Hj; 81.10.Fq; 42.55.Rz  相似文献   

11.
Variations of fluorescence intensity ratio of green (generated from Er3+ 2H11/2 and 4S3/2 levels) and red (generated from the sublevels of Er3+ 4F9/2 level) upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals have been studied as a function of temperature under 976 nm laser diode excitation. In the temperature range of 323-673 K, the maximum sensitivities of about 0.0134 K− 1 and 0.0104 K− 1 are obtained by using green and red emission, respectively. Er3+/Yb3+/Li+:ZrO2 nanocrystals show potential application value in nanoscale thermal sensor.  相似文献   

12.
Dynamics of the Yb3+ to Er3+ energy transfer in LiNbO3   总被引:1,自引:0,他引:1  
The energy transfer dynamics between Yb3+ and Er3+ ions in lithium niobate is investigated after ytterbium-pulsed excitation at 920 nm. The sensitisation of the LiNbO3:Er3+ system with Yb3+ ions does not modify the lifetime of the 4I13/2 erbium level (1.5-μm emission), whereas it induces a marked, concentration-dependent change in the lifetime of the 2F5/2 (Yb3+) and 4S3/2 (Er3+) multiplets (1060-nm and 550-nm emissions, respectively). The results are analysed by using the rate-equation formalism and cross-relaxation model for the energy transfer. Received: 15 October 1998 / Revised version: 24 November 1998 / Published online: 24 February 1999  相似文献   

13.
Color controllable Er3+/Yb3+‐codoped La2MoO6 upconverting nanocrystals are successfully synthesized via a facile sol‐gel method. Under the irradiation of 980 nm light, the entire samples exhibit dazzling upconversion (UC) emissions arising from the intra‐4f transitions of Er3+ ions and the UC emission intensity is strongly dependent on the Yb3+ ion concentration. Moreover, by controlling the Yb3+ ion concentration, the emission color is changed from green to yellow and finally to red as a result of the energy back transfer from Er3+ to Yb3+ ions, which is further verified by the theoretically discussion based on the steady‐state rate expressions. The optical thermometric properties of the prepared nanocrystals based on the (2H11/2,4S3/2) thermally coupled levels of Er3+ ions are systematically studied by analyzing the temperature‐dependent green UC emission spectra in the range of 303–663 K. The maximum sensor sensitivity of resultant nanocrystals is determined to be 0.0083 K−1 at 510 K. Furthermore, the emitting color of the synthesized nanocrystals relies on the temperature. In addition, the heating effect induced by the excitation pump power is also investigated and the host lattice temperature is enhanced from 319 to 404 K with raising the pump power from 159 to 757 mW.  相似文献   

14.
LaF3:Yb3+,Er3+/LaF3 core/shell nanocrystals were successfully synthesized using solvothermal method. The crystal structure, morphology and photoluminescence properties of as-prepared nanocrystals were investigated in detail. XRD patterns show that the obtained LaF3:Yb3+,Er3+ core and LaF3:Yb3+,Er3+/LaF3 core/shell nanocrystals exhibit hexagonal structure. The average particle size is about 9.3 nm and 11.4 nm for core and core/shell nanocrystals, respectively. Compared with LaF3:Yb3+,Er3+ nanocrystals, both the upconversion emission intensity and the lifetime increase in LaF3:Yb3+,Er3+/LaF3 core/shell nanocrystals. The enhancement can be attributed to the LaF3 shell which can eliminate the nonradiative centers on the surface of LaF3:Yb3+,Er3+ nanocrystals.  相似文献   

15.
16.
We prepared Er3+ doped and Er3+/Yb3+ codoped Sb2O4 nanocrystals by the sol-gel method. The Raman, X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra of the samples were studied. The phonon energy of the Sb2O4 nanocrystals is very low (the maximum value being 461 cm−1). The upconversion (UC) red emission of the Er3+/Yb3+ codoped sample is very strong at 975 nm laser diode excitation. The Sb2O4 nanocrystals will be a promising luminous material.  相似文献   

17.
Energy transfer has been studied from Er3+ to Eu3+ ions on excitation with NIR photons (796 and 980 nm) with and without Yb3+ ions. It is found that in one case the presence of Yb3+ enhances the fluorescence yield (980 nm excitation) whereas in the other case it quenches (796 nm excitation). Energy transfer from Er3+ ion's levels 4S3/2 and 2H11/2 is verified by decay curve analysis in both the cases. The nature of interaction between the donor (Er) and the acceptor (Eu) ions is found to be dipole-dipole. The energy transfer parameters viz. transfer probability, critical distance etc. have been calculated.  相似文献   

18.
彭扬  李善锋  张庆瑜  李毅刚  徐雷 《物理学报》2007,56(12):7286-7294
采用固相反应方法,制备了Er2O3浓度固定为0.5mol%,Yb2O3浓度范围为0.0mol%—5.5mol%的Er/Yb共掺激光玻璃.通过吸收光谱、光致荧光光谱和上转换荧光光谱,研究了Yb2O3浓度对Er3+荧光特性的影响,并探讨了相关的物理机制.研究结果表明:Yb3+共掺对Er3+4 关键词: Er/Yb共掺 光致荧光 能量传递 合作上转换  相似文献   

19.
Er3+ doped TiO2–La2O3 glasses modified by ZrO2 have been successfully fabricated by the containerless method with incorporated Yb3+ ions as sensitizers. Under the excitation of 980 and 808 nm diode lasers, visible emissions centered at 534, 554 and 674 nm are observed, which are assigned to the Er3+ transitions of 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2, respectively. The emission signals are so strong that they can be observed by naked eyes even at pumping power as low as 20 mW. Measurements of pump-power dependent intensity and time-resolved decay behavior of upconversion luminescence show that two-photon excited state absorption (ESA) and energy transfer (ET) between rare earth ions are the predominant mechanisms for upconversion emissions. Besides, the intensity of upconversion luminescence has been enhanced by increasing the concentration of ZrO2 in these rare earth doped bulk titanate glasses.  相似文献   

20.
Cubic phase Lu2O3:Er3+/Yb3+ nanocrystal phosphors were prepared by sol–gel method. Fourier transform infrared (FT-IR) spectra were measured to evaluate the vibrational feature of the samples. Green and red radiations were observed upon 980 nm diode laser excitation. Laser power and Er3+ or Yb3+ doping concentration dependence of upconversion luminescence were studied to understand upconversion mechanisms. Excited state absorption, cross relaxation and energy transfer processes are the possible mechanisms for the visible emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号