首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excimer laser annealing (ELA) is a widely used technique for producing polycrystalline silicon (poly-Si) thin films. An optical inspection system with simple optical arrangements for rapid measurement of recrystallization results of poly-Si thin films is developed in this study. The recrystallization results after both frontside ELA and backside ELA can be easily visible from the profile of peak power density distribution using the optical inspection system developed with an optimized moving velocity of 0.312 mm/s of the specimen. The method of backside ELA is suggested for batch production of low-temperature polycrystalline silicon thin-film transistors due to higher laser beam utilization efficiency and lower surface roughness of poly-Si films.  相似文献   

2.
Kuo  C. -C. 《Laser Physics》2008,18(4):464-471
Polycrystalline silicon (poly-Si) films fabricated by pulsed excimer laser crystallization (ELC) have been investigated using time-resolved optical measurements, scanning-electron microscopy, and cross-sectional transmission-electron microscopy. Detailed crystallization mechanisms are proposed to interpret the microstructure evolution of poly-Si films for both frontside and backside ELC. It is found that the backside ELC is a good candidate for the manufacturing of low-temperature polycrystalline silicon because of the high laser efficiency and low surface roughness of the poly-Si films.  相似文献   

3.
Excimer-laser crystallization (ELC) is the most commonly employed technology for fabricating low-temperature polycrystalline silicon (LTPS). Investigations on the surface roughness of polycrystalline silicon (poly-Si) thin films have become an important issue because the surface roughness of poly-Si thin films is widely believed to be related to its electrical characteristics. In this study, we develop a simple optical measurement system for rapid surface roughness measurements of poly-Si thin films fabricated by frontside ELC and backside ELC. We find that the incident angle of 20° is a good candidate for measuring the surface roughness of poly-Si thin films. The surface roughness of polycrystalline silicon thin films can be determined rapidly from the reflected peak power density measured by the optical system developed using the prediction equation. The maximum measurement error rate of the optical measurement system developed is less than 9.71%. The savings in measurement time of the surface roughness of poly-Si thin films is up to 83%. The method of backside ELC is suggested for batch production of low-temperature polycrystalline silicon thin-film transistors due to the lower surface roughness of poly-Si films and higher laser-beam utilization efficiency.  相似文献   

4.
We demonstrate a method of on-line determination of the average grain size of polycrystalline silicon (poly-Si) deduced from the melt duration of molten silicon during the phase transformation using an in-situ optical measurement system. Optical measurements revealed that the entire phase transformation processes are melting, nucleation, and resolidification. The average grain size of poly-Si can be directly deduced from the melt duration of molten Si under a thickness uniformity of precursor a-Si thin films below ±5%, a pulse-to-pulse variation in the excimer-laser-beam energy below 2% (standard deviation), and a laser-beam spatial homogeneity below 2.5%.  相似文献   

5.
6.
Amorphous germanium (a-Ge) films in samples with or without an absorptive film are crystallized by short-pulse XeF excimer laser crystallization (ELC). An in situ time-resolved optical reflection and transmission (TRORT) monitoring system combining a cw He-Ne probe laser, a digital oscilloscope and two photodetectors is developed to investigate the melting and resolidification dynamics of Ge films during ELC. TRORT measurements reveal that the longest melt duration is prolonged from 250 to 1000 ns by adding absorptive films in the samples. Absorptive films are shown to be effective in improving the melt duration of the molten state and the grain size of polycrystalline Ge films. The grain size with a diameter of approximately 12 μm can be fabricated in the superlateral growth regime for 90-nm-thick a-Ge films at room temperature in air by single-shot ELC.  相似文献   

7.
C. C. Kuo 《Laser Physics》2010,20(6):1525-1531
This work demonstrates a non-destructive optical diagnostic technique for determining grain size of polycrystalline silicon (poly-Si) and presents the result of melt-mediated phase transformation after excimer laser crystallization. The relationship between the average grain size of poly-Si films and transmissivity is investigated experimentally, which is found to coincide with the observation by field-emission scanning electron microscopy. This methodology can be used in association with a variety of non-destructive monitoring schemes.  相似文献   

8.
Excimer-laser annealing is a widely used technique for producing polycrystalline silicon thin films. We develop an optical inspection system with simple optical arrangements for rapid measurement of recrystallization and grain-size characterization of poly-Si thin films. The recrystallization characterization of the sample after excimer-laser annealing can be easily manifested directly by the profile of peak-power density distribution. We investigate the relation between the maximum grain size of poly-Si thin films and transmission of the optical measurements and find that it coincides with those obtained by field-emission scanning electron microscopy.  相似文献   

9.
多晶硅在光电子器件领域具有较为重要的用途。利用磁控溅射镀膜系统,通过共溅射技术在玻璃衬底上制备了非晶硅铝(α-Si/Al)复合膜,将Al原子团包覆在α-Si基质中,膜中的Al含量可通过Al和Si的溅射功率比来调节。复合膜于N2气氛中进行350 ℃,10 min快速退火处理,制备出了多晶硅薄膜。利用X射线衍射仪、拉曼光谱仪和紫外-可见光-近红外分光光度计对多晶硅薄膜的性能进行表征,研究了Al含量对多晶硅薄膜性能的影响。结果表明:共溅射法制备的α-Si/Al复合膜在低温光热退火下晶化为晶粒分布均匀的多晶硅薄膜;随着膜中Al含量逐渐增加,多晶硅薄膜的晶化率、晶粒尺寸逐渐增加,带隙则逐渐降低;Al/Si溅射功率比为0.1时可获得纳米晶硅薄膜,Al/Si溅射功率比为0.3时得到晶化率较高的多晶硅薄膜,通过Al含量的调节可实现多晶硅薄膜的晶化率、晶粒尺寸及带隙的可控。  相似文献   

10.
Numerical computations and a series of experiments were conducted in microgravity to study the ignition characteristics of a thin polymethylmethacrylate (PMMA) sheet (thicknesses of 0.2 and 0.4 mm) using a CO2 laser as an external radiant source. Two separate ignition events were observed, including ignition over the irradiated surface (frontside ignition), and ignition, after some delay, over the backside surface (backside ignition). The backside ignition was achieved in two different modes. In the first mode, after the laser was turned off, the flame shrank and stabilized closer to the fuel surface. This allowed the flame to travel from the frontside to the backside through the small, open hole generated by the laser’s vaporization of PMMA. In the second mode, backside ignition was achieved during the laser irradiation. The numerical calculation simulating this second process predicts fresh oxygen supply flows from the backside gas phase to the frontside gas phase through the open hole, which mixes with accumulated hot MMA fuel vapor which is ignited as a second flame in the frontside gas phase above the hole. Then, the flame initiated from the second ignition travels through the hole to ignite the accumulated flammable mixture in the backside gas phase near the hole, attaining backside ignition. The first backside ignition mode was observed in 21% oxygen and the second backside ignition mode in 35%. The duration of the laser irradiation appears to have important effects on the onset of backside ignition. For example, in 21% oxygen, the backside ignition was attained after a 3 s laser duration but was not observed after a 6 s laser duration (within the available test time of 10 s). Longer laser duration might prevent two-sided ignition in low oxygen concentrations.  相似文献   

11.
Amorphous silicon (a-Si) films were prepared by sputtering method with polycrystalline and monocrystalline silicon targets. Structural, optical and electrical properties of the a-Si films have been systematically studied. The deposition power is from 100 to 200 W. Compared with the a-Si films deposited by using monocrystalline silicon target, the a-Si films prepared with polycrystalline silicon target exhibit better growth property, similar optical band gap, and own the highest mobility of 1.658 cm2/Vs, which make a good match with the optimal window of optical band gap for a-Si solar cells. The results indicated that the polycrystalline silicon target is superior to the monocrystalline silicon target when used to prepare a-Si films as the intrinsic layer in a-Si solar cells.  相似文献   

12.
The liquid-solid interface motion and temperature history of thin Si films during excimer laser annealing are observed by in situ experiments combining time-resolved (~1 ns) electrical conductance, optical reflectance/transmittance at visible and near-IR wavelengths and thermal emission measurements. For laser energy densities causing partial melting, the maximum temperature remains close to the melting point of amorphous silicon (a-Si). When complete melting occurs, substantial supercooling is observed, followed by spontaneous nucleation. These phase transformations are consistent with the recrystallized poly-Si morphologies. It is also found that the melting of poly-Si occurs close to the melting point of crystalline silicon. This temperature is higher than the melting point of a-Si by about 100-150 K.  相似文献   

13.
XeF excimer laser-induced melting and recrystallization dynamics of amorphous germanium are investigated using time-resolved optical reflection and transmission measurements with a nanosecond time resolution, field-emission scanning electron microscopy, and micro-Raman spectroscopy. It is found that the disc-shaped grain with a diameter of approximately 0.8 μm is located in the complete melting regime with a melt phase duration of approximately 141–200 ns. The significant change of transmissivity is a key phenomenon revealing the excessive excimer laser fluence during excimer laser crystallization by in-situ optical measurements. Differences between the melting and recrystallization phenomenon for Si and Ge thin films are also discussed.  相似文献   

14.
C. -C. Kuo 《Laser Physics》2009,19(1):143-147
The rapid recrystallization of a-Si films utilizing excimer laser crystallization (ELC) is investigated. The melt duration of liquid silicon (liquid Si) is measured by in-situ time-resolved optical measurements during ELC. The grain size of crystallized poly-Si films are characterized by FE-SEM. The substrate temperature as a function of the longest melt duration of liquid Si for different Si film thicknesses are presented. In-situ timeresolved optical measurements reveal that the longest melt duration of 400-nm-thick a-Si thin films at a substrate temperature of 500 °C is 1714 ns. The diameter of the disk grain as large as 4.7 μm is produced by ELC, which can be applied to solar cells with a high conversion efficiency and reliability.  相似文献   

15.
A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vacuum deposited by weak epitaxial growth(WEG) method were acquired with polarized optical microscopy(POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy(AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method.  相似文献   

16.
用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对以SiH4/H2及SiCl4/H2为源气体、采用 等离子体增强化学气相沉积技术制备的非晶硅薄膜和多晶硅薄膜进行了光照稳定性的研究.实验表明,制备的多晶硅薄膜并没有出现 非晶硅中的光致衰减现象,其光电导、暗电导在光照过程中没有下降反而有所上升且电导率 变化快慢受氢稀释度的制约.多晶硅薄膜的光照稳定性可能来源于高的晶化度及Cl元素的存在. 关键词: 多晶硅薄膜 稳恒光电导效应 晶界 光致衰退效应  相似文献   

17.
Composite films were fabricated by co-evaporating Zinc Oxide with Silicon at room temperatures. The resulting films had polycrystalline grains of Zinc Oxide whose grain size were few hundred nanometers, embedded in the silicon matrix. These nanocrystalline grains of ZnO showed good photoluminescence emission at 520 nm along with a photoluminescence emission at 620 nm being contributed by the silicon background. Thus, the nanocomposite films gave a board emission, making it a potentially useful candidate for optoelectronic devices. The photo-luminescent property of the films was found to be stable since the homgenously dispersed ZnO nanocrystals were not allowed to agglomerate by the silicon background.  相似文献   

18.
The possibility of designing thermoelectric sensors based on multielement structures of higher manganese silicide (HMS) polycrystalline films is considered. Test structures with various configurations are developed for studying electrical and thermoelectric parameters of polycrystalline HMS films. The geometrical sizes of the elements of test structures are chosen to match the grain size in polycrystalline HMS films. The test structures are prepared using the planar silicon technology. In these structures, the current-voltage characteristics, Hall constant, charge carrier concentration, and mobility are measured. The thermopower (α) and electrical conductivity (σ) are studied in a temperature range of T = 77–600 K, where α > 250 μV/K and electrical conductivity σ ∼ 20 (Ω cm)−1. It is shown that the sensitivity and thermopowers increase upon a decrease in the cross-sectional area of the elements.  相似文献   

19.
黄征  武莉莉  黎兵  郝霞  贺剑雄  冯良桓  李卫  张静全  蔡亚平 《中国物理 B》2010,19(12):127204-127204
In order to fabricate AlSb polycrystalline thin films without post annealing, this paper studies a technology of magnetron co-sputtering onto intentionally heated substrate. It compares the structural characteristics and electrical properties of AlSb films which are deposited at different substrate temperatures. It finds that the films prepared at a substrate temperature of 450 oC exhibit an enhanced grain growth with an average grain size of 21 nm and the lattice constant is 0.61562 nm that goes well with unstained lattice constant (0.61355 nm). The ln(σdark) ~1/T curves show that the conductivity activation energy is about 0.38 eV when the film is deposited at 450 oC without an annealing. The transmittance and reflectance spectra show that the film deposited at 450 oC has an optical band gap of 1.6 eV. These results indicate that we have prepared AlSb polycrystalline films which do not need a post annealing.  相似文献   

20.
Chil-Chyuan Kuo 《Optik》2011,122(8):655-659
An in situ time-resolved optical reflection and transmission (TRORT) monitoring system combining two He-Ne probe lasers, a digital oscilloscope and three fast photodetectors is developed to investigate the crystallization processes of Si thin films during excimer laser crystallization (ELC). The physical meaning of optical spectra obtained by TRORT measurements has been interpreted in detail. The melt duration and transient phase transformation dynamics of Si thin films can be determined and interpreted immediately. A high efficiency and non-destructive evaluation approach is proposed for determining the grain size of polycrystalline Si after ELC directly and immediacy under appropriate experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号