首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparative study of hardness of thin films of hydrogenated amorphous silicon (a-Si:H) and hydrogen-free amorphous silicon (a-Si) was carried out to reveal the role of hydrogen in the plastic properties of amorphous silicon. In addition, the effect of hydrogen on hardness was established by changing hydrogen concentration in the material using post-deposition processing of the samples. The hydrogen concentration in a-Si:H was decreased by thermal annealing. In a-Si hydrogen was introduced by plasma hydrogenation. The values of hardness of the as-prepared a-Si and a-Si:H films were determined by nanoindentation using depth profiling. Low-depth indentation was applied to evaluate the effect of post-hydrogenation. The results obtained show that the presence of hydrogen in the amorphous silicon network leads to the increase in hardness. The conducted experiments demonstrate that plasma hydrogenation can be used as an effective tool to increase the hardness of amorphous silicon. Hardness of a-Si:H of about 12.3–12.7 GPa is as high as of crystalline silicon, suggesting a-Si:H can be a substitute for crystalline silicon in some MEMS.  相似文献   

2.
王权  丁建宁  何宇亮  薛伟  范真 《物理学报》2007,56(8):4834-4840
使用等离子体增强化学气相沉积系统,在射频和直流负偏压的双重激励下制备了本征和掺杂后的氢化硅薄膜.利用拉曼谱对薄膜进行了微结构分析,用纳米压痕系统研究了薄膜的介观力学行为.研究表明:制备于玻璃衬底上的氢化硅薄膜,由于存在非晶态的过渡缓冲层,弹性模量小于相应的制备于单晶硅衬底的薄膜.对于掺杂的氢化硅薄膜,由于磷的掺入使得薄膜晶粒细化、有序度提高,薄膜的晶态比一般在40%以上.而硼的掺入,薄膜晶态比减小,一般低于40%.同时发现,掺磷、本征和掺硼的氢化硅薄膜分别在晶态比为45%,30%和15%左右处,弹性模量较 关键词: 氢化硅薄膜 拉曼谱 弹性模量 晶态比  相似文献   

3.
Thin films of hydrogenated silicon were deposited on glass and single-crystalline silicon substrates using a capacitively coupled radio-frequency plasma-enhanced vapor-deposition system with the help of direct-current bias stimulation. Micro-Raman scattering was applied to investigate the microstructure of the thin films obtained. The crystalline volume fraction, X c, was obtained from the Raman spectra. Microscopic mechanical characterization of the thin films was carried out by nanoindentation based on the conventional depth-sensing indentation method. An analytical relation between X c and the elastic modulus was thereby established. The elastic modulus of the film on a glass substrate was found to be lower than that of the film on a monocrystalline silicon substrate with the same X c. The grain size of a phosphorus-doped thin film was smaller than that of the intrinsic one, with greater ordering of the grains and X c was found to be usually above 40%. A film with boron doping was on the opposite side, with X c usually below 40%. In the phosphorus-doped, intrinsic, and boron-doped films, the elastic moduli were lower when the X c values were 45%, 30%, and 15%, respectively.  相似文献   

4.
Tetragonal lead titanate (PbTiO3, PT) thin films are grown on (1 0 0) MgO substrate by pulsed-laser deposition (PLD) for expected applications in integrated optics. The realisation of outstanding and reliable devices into integrated circuits requires sufficient mechanical resistance despite that the obtained PT films display interesting waveguiding properties associated with low optical losses. Two mechanical properties characteristic of elasticity and hardness of PT films are studied. The elastic modulus (E or Young's modulus) and the hardness (H) are measured by the nanoindentation technique. These mechanical properties are correlated to the crystalline quality of PT/MgO thin films. The films show epitaxial relationship with the MgO substrate and the orientation of crystallites perpendicularly to the surface substrate may be the consequence of a growth process along c-axis, a-axis or both. Differences on curves plotting hardness and elastic modulus as a function of indentation depth are observed as the curves are less dispersed for the films mainly c-axis oriented.  相似文献   

5.
椭偏透射法测量氢化非晶硅薄膜厚度和光学参数   总被引:1,自引:0,他引:1       下载免费PDF全文
针对多角度椭偏测量透明基片上薄膜厚度和光学参数时基片背面非相干反射光的影响问题,报道了利用椭偏透射谱测量等离子增强化学气相沉积法(PECVD)制备的a-Si:H薄膜厚度和光学参数的方法,分析了基片温度Ts和辉光放电前气体温度Tg的影响.研究表明,用椭偏透射法测量的a-Si:H薄膜厚度值与扫描电镜(SEM)测得的值相当,推导得到的光学参数与其他研究者得到的结果一致.该方法可用于生长在透明基片上的其他非晶或多晶薄膜. 关键词: 椭偏测量 透射法 光学参数 氢化非晶硅薄膜  相似文献   

6.
Nanoindentation testing was performed on nitrogen (N2) incorporated diamond-like carbon (N-DLC) films and deposited using radio-frequency plasma-enhanced chemical vapor deposition technique, with varied percentage of nitrogen partial pressures of 0, 44.4, 66.6, and 76.1%. The values of nanohardness (H) and elastic modulus (E) of these films were obtained from 38 to 22 GPa and 462 to 330 GPa, respectively, as the partial pressure of N2 increases from 0 to 76.1%. Further, these films were studied for % elastic recovery, ratio between residual displacement after load removal and displacement at maximum load (d res/d max ), plastic deformation energy and plasticity index parameter (H/E). Both hardness per unit stress and plasticity index per unit stress were found to be maximum at N2 partial pressure of 76.1%. X-ray photoelectron spectroscopy measurements confirmed the presence of N2 in these films.  相似文献   

7.
We report results obtained from measurements of optical transmittance spectra carried out on a series of silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane diluted with hydrogen. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). Spectral refractive indices and absorption coefficients were determined from transmittance spectra. The spectral absorption coefficients were used to determine the Tauc optical band gap energy, the B factor of the Tauc plots, E 04 (energy at which the absorption coefficient is equal to 104 cm−1), and the Urbach energy as a function of the hydrogen dilution. The results were correlated with microstructure, namely volume fractions of the amorphous and crystalline phase with voids, and with the grain size.   相似文献   

8.
Nanocrystalline thin films of Ni–Ti shape memory alloy are deposited on an Si substrate by the DC-magnetron co-sputtering technique and 120?keV Ag ions are implanted at different fluences. The thickness and composition of the pristine films are determined by Rutherford Backscattering Spectrometry (RBS). X-Ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe resistivity methods have been used to study the structural, morphological and electrical transport properties. XRD analysis has revealed the existence of martensitic and austenite phases in the pristine film and also evidenced the structural changes in Ag-implanted Ni–Ti films at different fluences. AFM studies have revealed that surface roughness and grain size of Ni–Ti films have decreased with an increase in ion fluence. The modifications in the mechanical behaviour of implanted Ni–Ti films w.r.t pristine film is determined by using a Nano-indentation tester at room temperature. Higher hardness and the ratio of higher hardness (H) to elastic modulus (Er) are observed for the film implanted at an optimized fluence of 9?×?1015 ions/cm2. This improvement in mechanical behaviour could be understood in terms of grain refinement and dislocation induced by the Ag ion implantation in the Ni–Ti thin films.  相似文献   

9.
ABSTRACT

Multiple exciton generation (MEG) in nanometer-sized hydrogen-passivated silicon nanowires (NWs), and quasi two-dimensional nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbative many-body quantum mechanics calculations based on the density functional theory simulations. Working to the second order in the electron–photon coupling and in the screened Coulomb interaction, we calculate quantum efficiency (QE), the average number of excitons created by a single absorbed photon, in the Si29H36 quantum dots (QDs) with crystalline and amorphous core structures, simple cubic three-dimensional arrays constructed from these QDs, crystalline and amorphous NWs, and quasi two-dimensional silicon nanofilms, also both crystalline and amorphous. Efficient MEG with QE ranging from 1.3 up to 1.8 at the photon energy of about 3Eg, where Eg is the electronic gap, is predicted in these nanoparticles except for the crystalline NW and crystalline film where QE ? 1. MEG in the amorphous nanoparticles is enhanced by the electron localisation due to structural disorder. Combined with the lower gaps, the nanometer-sized amorphous silicon NWs and films are predicted to have effective carrier multiplication within the solar spectrum range.  相似文献   

10.
Raman spectra, atomic force microscope (AFM) images, hardness (H) and Young's modulus (E) measurements were carried out in order to characterize carbon thin films obtained from a C60 ion beam on silicon substrates at different deposition energies (from 100 up to 500 eV). The mechanical properties were studied via the nanoindentation technique. It has been observed by Raman spectroscopy and AFM that the microstructure presents significant changes for films deposited at energies close to 300 eV. However, these remarkable changes have not been noticeable on the mechanical properties: apparently H and E increase with higher deposition energy up to ∼11 and ∼116 GPa, respectively. These values are underestimated if the influence of the film roughness is not taken into account.  相似文献   

11.
Quinary Ti-Zr-Hf-Cu-Ni high-entropy metallic glass thin films were produced by magnetron sputter deposition. Nanoindentation tests indicate that the deposited film exhibits a relatively large hardness of 10.4±0.6 GPa and a high elastic modulus of 131±11 GPa under the strain rate of 0.5 s−1. Specifically, the strain rate sensitivity of hardness measured for the thin film is 0.05, the highest value reported for metallic glasses so far. Such high strain rate sensitivity of hardness is likely due to the high-entropy effect which stabilizes the amorphous structure with enhanced homogeneity.  相似文献   

12.
a-C:H films were prepared by middle frequency plasma chemical vapor deposition (MF-PCVD) on silicon substrates from two hydrocarbon source gases, CH4 and a mixture of C2H2 + H2, at varying bias voltage amplitudes. Raman spectroscopy shows that the structure of the a-C:H films deposited from these two precursors is different. For the films deposited from CH4, the G peak position around 1520 cm−1 and the small intensity ratio of D peak to G peak (I(D)/I(G)) indicate that the C-C sp3 fraction in this film is about 20 at.%. These films are diamond-like a-C:H films. For the films deposited from C2H2 + H2, the Raman results indicate that their structure is close to graphite-like amorphous carbon. The hardness and elastic modulus of the films deposited from CH4 increase with increasing bias voltage, while a decrease of hardness and elastic modulus of the films deposited from a mixture of C2H2 + H2 with increasing bias voltage is observed.  相似文献   

13.
Cr-containing hydrogenated amorphous carbon (Cr-C:H) films were deposited on silicon substrates using a DC reactive magnetron sputtering with Cr target in an Ar and C2H2 gas mixture. The composition, bond structure, mechanical hardness and elastic recovery of the films were characterized using energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and nano-indentation. The film tribological behavior was also studied by a ball-on-disc tribo-tester. The results showed that the films deposited at low C2H2 flow rate (<10 sccm) presented a feature of composite Cr-C:H structure, which consisted of hard brittle chromium carbide phases and amorphous hydrocarbon phase, and thus led to the observed low elastic recovery and poor wear resistance of the films. However, the film deposited at high C2H2 flow rate (40 sccm) was found to present a typical feature of polymer-like a-C:H structure containing a large amount of sp3 C-H bonds. As a result, the film revealed a high elastic recovery, and thus exhibited an excellent wear resistance.  相似文献   

14.
Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost compared to crystalline bulk silicon. However, their overall efficiency and stability are lower than that of their bulk crystalline counterpart. Limited work has been performed on simultaneously solving the efficiency and stability issues of a-Si:H. Previous work has shown that surface texturing and crystallization on a-Si:H thin film can be achieved through a single-step laser processing, which can potentially alleviate the disadvantages of a-Si:H in solar cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films deposited on glass substrates were irradiated by KrF excimer laser pulses and the effect of hydrogen on surface morphologies and microstructures is discussed. Sharp spikes are focused only on hydrogenated films, and the large-grained and fine-grained regions caused by two crystallization processes are also induced by presence of hydrogen. Enhanced light absorptance is observed due to light trapping based on surface geometry changes of a-Si:H films, while the formation of a mixture of nanocrystalline silicon and original amorphous silicon after crystallization suggests that the overall material stability can potentially improve. The relationship between crystallinity, fluence and number of pulses is also investigated. Furthermore, a step-by-step crystallization process is introduced to prevent the hydrogen from diffusing out in order to reduce the defect density, and the relationship between residue hydrogen concentration, fluence and step width is discussed. Finally, the combined effects show that the single-step process of surface texturing and step-by-step crystallization induced by excimer laser processing are promising for a-Si:H thin-film solar cell applications.  相似文献   

15.
The present work describes the formation of amorphous alloys in the (Al1?xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5–383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.  相似文献   

16.
Elastic material properties of metamict titanite (sample E2312) during thermally induced stepwise recrystallization are measured using nanoindentation. Changes of the elastic modulus (E) and the hardness (H) are related to increasing long-range order and vanishing amorphous interface areas. Metamict titanite shows H and E values close to titanite glass. H decreases on annealing until ca. 950?K to 9.08?GPa and increases at higher temperatures, while E increases continuously on annealing up to ca. 168.4?GPa at 1220?K. Crystalline titanite from Rauris shows strong anisotropy and H and E values are clearly larger than those of E2312.  相似文献   

17.
Z.A.Umar  R.S.Rawat  R.Ahmad  A.K.Kumar  Y.Wang  T.Hussain  Z.Chen  L.Shen  Z.Zhang 《中国物理 B》2014,23(2):25204-025204
The Al/a-C nanocomposite thin films are synthesized on Si substrates using a dense plasma focus device with alu- minum fitted anode and operating with CH4/Ar admixture. X-ray diffractometer results confirm the formation of metallic crystalline Al phases using different numbers of focus shots. Raman analyses show the formation of D and G peaks for all thin film samples, confirming the presence of a-C in the nanocomposite thin films. The formation of Al/a-C nanocomposite thin films is further confirmed using X-ray photoelectron spectroscopy analysis. The scanning electron microscope results show that the deposited thin films consist of nanoparticles and their agglomerates. The sizes of th agglomerates increase with increasing numbers of focus deposition shots. The nanoindentation results show the variations in hardness and elastic modulus values of nanocomposite thin film with increasing the number of focus shots. Maximum values of hardness and elastic modulus of the composite thin film prepared using 20 focus shots are found to be about 10.7 GPa and 189.2 GPa, respectively.  相似文献   

18.
In this study, boron doped zinc oxide (ZnO:B) films were prepared at different water to diethyl zinc (H2O/DEZ) flow ratios from 0.6 to 1.4 by a low pressure chemical vapor deposition (LPCVD) technique. It is found that the morphology of ZnO:B films varies from small leaf-like to pyramidal surface structures with the increasing H2O/DEZ flow ratio. The rough ZnO:B films deposited at a relatively H2O/DEZ flow ratio such as 1.2 or 1.4 show a high haze value of up to 28 % at 600 nm and $\mathrm{a} (11\overline{2}0)$ preferential crystallographic orientation. All ZnO:B films were applied in hydrogenated amorphous silicon/microcrystalline silicon tandem solar cells (a-Si:H/μc-Si:H) as front electrodes. The efficiency of the solar cells increases with the increasing H2O/DEZ flow ratio, which is attributed to a high spectral response mainly in the long-wavelength range and the consequent enhancement of short-circuit current. A high-efficiency a-Si:H/μc-Si:H tandem solar cell of 10 % was achieved. The H2O/DEZ ratio is an important process parameter to tune the material properties of LPCVD ZnO:B films and the performances of corresponding silicon thin film solar cells.  相似文献   

19.
Zr1?xWx nanocrystalline films of Zr-W solid solutions and ZrW2 Laves phase were synthesized by magnetron co-sputtering. Large values of the H/E ratio up to 0.09 are observed for grain sizes in the nanometer range along with a hardness above 10 GPa and Young's modulus below 230 GPa. H/E values are correlated with the developed surface of grain boundaries suggesting an elastic deformation mostly handled by the grain boundaries. This is associated to friction coefficients comparable to those of metallic glass surfaces. In contrast to fragile bulk Laves phases, no cracks were detected at the film surface after indentation and scratch test of nanocrystalline ZrW2. The friction coefficient of such films against diamond tip was in the range 0.08–0.15, similarly to metallic glass surfaces.  相似文献   

20.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号