首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper reports on the characterisation and analysis of spatter deposition during laser drilling in Nimonic 263 alloy for various laser processing parameters using a fibre-optic delivered 400 W Nd:YAG laser. The principal findings are a large proportion of the spatter (approx. > 70%) was deposited due to the initial laser pulses (before beam breakthrough) required to drill a through-hole. Short pulse widths, low peak powers and high pulse frequencies generated smaller spatter deposition areas. At high pulse frequencies, the spatter distribution/thickness can be altered as a result of laser-ejected material interaction. Focal plane positions between −0.5 and +1.5 mm produced relatively similar spatter areas of about 14 mm2. As a result of the reduction in the material removed per pulse, a longer focal length of 160 mm generated smaller areas of spatter deposition in comparison to a shorter focal length of 120 mm. In addition, a generic relationship between the spatter area and dentrance/dexit with increasing total laser energy has been established.  相似文献   

2.
The temporal pulse train modulation during laser percussion drilling was found to effect significant changes to the material ejection processes. In particular, distinct differences in the material ejection processes have been observed between a temporal pulse train shaping technique termed as sequential pulse delivery pattern control (SPDPC) and the normal delivery pattern (NDP), wherein the parameters of successive laser pulses were constant. Due to the reduced upward material removal fractions in SPDPC drilling, the spatter deposition area was reduced from approximately 6.7 to 2.7 mm2. In addition, the melt layer thicknesses at the hole bottom were significantly increased from 11–61 to 18–369 μm. Such changes were identified as being due to the low laser pulse intensities before beam breakthrough associated with the SPDPC method. It was observed that the use of the linearly increasing SPDPC method increased the downward material removal fractions, from 20% to 28% observed in NDP drilling, to 34%–39%. Such an increase in the downward material ejection mechanism in SPDPC drilling was identified as being primarily due to the pointed blind-hole profile generated before the onset of beam breakthrough. The work has shown that modulating the entire pulse train in laser percussion drilling could control the material ejection processes. Furthermore, the fundamental elements of the SPDPC technique are given in terms of the rate of energy deposition and total pulse train energy.  相似文献   

3.
An analysis on the repeatability of a laser percussion drilling process is conducted using a flash lamp pumped Nd:YAG laser on 2 mm thick stainless-steel sheets. Laser drilling process is finding increasingly widespread application in the industry and has continually attracted new interests to the industry in recent years. However, the inherent problem of hole geometry repeatability associated with laser percussion drilling is likely to limit the extent of industrial applications of the process. The characteristic of melt ejection is found to be dependent on the parameter setting and is shown to have a significant influence on entrance hole geometry and hence repeatability. The relationship between the percentage standard deviation of entrance hole diameter and the operating parameters is established, and varies between 1.8% and 5.6% in the operating range under this study.  相似文献   

4.
An Au-coated Fe–Ni alloy thin plate was laser drilled by a pulsed Nd:YAG laser. The influences of laser parameters on the diameter of perforation, the outer diameter of crater and the roundness of the perforation have been investigated by employing scanning electron microscopy. The diameter of perforation increases gradually with an increase in pulse width from 0.3 to 8 ms at the fixed average laser power and frequency, and increases with an increase in average laser power from 10 to 25 W at the fixed pulse width and frequency. Some craters are found around the perforations because of the heat affecting of laser beam to the non-irradiated zone. The diametric difference of the perforation between the incident and the effluent sides is very small under the shortest pulse width of 0.3 ms. Good roundness of the perforation can be achieved at either the lowest pulse width or the lowest laser power.  相似文献   

5.
This paper reports on etching rates and hole quality for nanosecond laser percussion drilling of 200-μm thick 316L stainless steel performed with micro supersonic gas jets. The assist-gas jets were produced using nozzles of 200, 300 and 500 μm nominal throat diameters. Air and oxygen were used separately for the process gas in the drilling trials and the drilling performance was compared to drilling in ambient conditions. The highest etch rate of 1.2 μm per pulse was obtained in the ambient atmosphere condition, but this was reduced by about 50% with assist-air jets from the 200 μm nozzle. Increasing the jet diameter and/or using oxygen assist gas also decreased the etching rate and increased the hole diameter. The 200 μm nozzle using air-assist jets produced the least amount of recast and gave the best compromise for etching rate. A combination of plasma shielding and different gas dynamic conditions inside the holes and at the surface are correlated to the observations of different drilling rates and hole characteristics.  相似文献   

6.
高精度玻璃打孔技术   总被引:1,自引:1,他引:0  
刘军汉  闫德全  周杨 《应用光学》2009,30(2):309-312
光学零件制造领域中,用传统的方法在微晶玻璃上加工高精度内孔存在很多困难,如钻孔时常出现椭圆、中心偏、锥形、爆边等问题。为了解决这些问题,利用简单的钻床和万能外圆磨床设备,在微晶玻璃上完成钻孔、扩孔、磨边加工后,得到了内孔尺寸精度为0.01mm、内孔与外圆同轴度为0.01mm的高精度圆孔。生产实践表明:该工艺重复性良好,加工性能稳定。不仅解决了玻璃钻孔常见问题,而且得到了高精度玻璃内孔。  相似文献   

7.
A two-dimensional, transient model is proposed to study the dynamic process of keyhole formation and the material changes during both the laser-on and-off periods. The keyhole shape, temperature field, and velocity field are analyzed. The results indicate that the dynamic changes of the target material in the laser-off period have a great influence on the final structure of the keyhole.  相似文献   

8.
The use of high-pressure gas jets in the laser-drilling process has significant influence on the melt ejection mechanism. These jets are highly unstable and this directly relates to the gas pressure and the geometry of the hole being drilled. The evolution of gas-dynamic instabilities during the laser-drilling process was investigated numerically. A minimum length nozzle (MLN) with a 300 μm throat diameter was modelled at various gas pressures, with the gas jet impinging on a range of simulated holes with different aspect ratios. The simulations predict the formation of surface pressure fluctuations that have a broad spectrum due to both the turbulent nature of the jet and the blunt shock oscillation on the surface. The surface pressure variations and the blunt shock oscillation govern the gas dynamic conditions inside the hole, which strongly influence the melt ejection phenomena during the laser-drilling process.  相似文献   

9.
In this study the surface behavior during its contact with the abrasive grain in the glass lapping process was studied using practical simulation which is the scratch test and the real contact between glass surfaces and α-alumina abrasive grains during lapping process. Formations and dimensions of the produced scratches were investigated to explain the grain action on the surface and the glass material removal rate. It has been found that humid environment created by the use of the slurry of loose abrasives causes more significant damages than the dry one. The use of slurry produces higher glass material removal rate in this environment and proves its utility in the lapping process. The shape of abrasive grains influences the nature of their action. Indeed, the worn grains produce scratches and chippings less than the sharp grains. During lapping, the number of scratches and theirs dimensions depend on the contact time and the abrasive grain size. It was concluded that the glass material removal rate during lapping depends on the cumulative actions of individual grains which produce scratches and chippings.  相似文献   

10.
Straight through-holes of high aspect ratio have been fabricated in glass by femtosecond laser pulses, utilizing unique characteristics of ultrafast lasers such as volumetric multi-photon absorption and nonlinear self-focusing. In this study, interestingly, the drilling process was initiated and progressed in a self-regulated manner, while the laser focus was fixed through the specimen at the neighborhood of the rear surface that was in contact with liquid during the entire drilling process. The deposition of laser energy along the nonlinearly extended focal range and the guided drilling along the pre-defined region are explained based on time-resolved optical transmission and emission measurements.  相似文献   

11.
In the last years, laser beam drilling became increasingly important for many technical applications as it allows the contactless production of high quality drill holes. So far, mainly short laser pulses are of industrial relevance, as they offer a good compromise between precision and efficiency and combine high ablation efficiency with low thermal damage of the workpiece. Laser beam drilling in this pulse length range is still a highly thermal process. There are two ablation mechanisms: evaporation and melt expulsion. In order to achieve high quality processing results, a basic process understanding is absolutely necessary. Yet, process observations in laser beam drilling suffer from both the short time scales and the restricted accessibility of the interaction zone. Numerical simulations offer the possibility to acquire additional knowledge of the process as they allow a direct look into the drill hole during the ablation process. In this contribution, a numerical finite volume multi-phase simulation model for laser beam drilling with short laser pulses shall be presented. The model is applied for a basic study of the ablation process with μs and ns laser pulses. The obtained results show good qualitative correspondence with experimental data.  相似文献   

12.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

13.
In this work, the two main factors that influence the repeatability of the laser percussion drilling process are identified. Experimental parametric analysis was carried out to correlate the laser parameters with the repeatability of a laser percussion drilling process. The experiment was conducted using a flash lamp pumped Nd:YAG laser to drill 2 mm thick mild steel sheets. The relationship between the percentage standard deviation (PSD) of entrance hole diameter, hole circularity and the operating parameters is established. Thirty-five holes were drilled and analysed for each set of identical laser parameters. The PSD of entrance hole diameter ranges between 1.47% and 4.78% for an operating window of 3.5–7 kW peak power, and 1–3 ms pulse width. The circularity of the entrance hole (defined as the ratio between the minimum and maximum diameters of the hole) ranges from 0.94 to 0.87, and is found to correlate with repeatability. The work shows that higher peak power, and shorter pulse width gives better hole geometry repeatability. The effect of melt ejection on hole geometry repeatability is also investigated. Melt ejection and spatter formation have been found to contribute to the poor repeatability of the process.  相似文献   

14.
Ultra-short-pulse lasers have proved to be effective tools for micromachining a wide range of materials. When the ultra-short laser pulse is focused inside the bulk of a transparent medium, nonlinear absorption occurs only near the focal volume that is subjected to high intensity. Three-dimensional structures can be fabricated inside transparent materials by taking advantage of this volumetric absorption. In this paper, femtosecond laser pulses were used to fabricate straight and bent through-channels. Drilling was initiated from the rear surface to preserve consistent absorption of the laser pulse. When the debris was not removed efficiently, variation of the channel diameter and occasional termination of the drilling process were observed. Machining in the presence of a liquid and additional use of ultrasonic wave agitation facilitated the debris ejection. The machined channels had diameters on the order of tens of microns, high aspect ratios, and good wall-surface quality. PACS 42.62.Cf; 42.65.Re; 81.05.Kf; 43.35.+d  相似文献   

15.
16.
In order to achieve a high fiber preform production rate, the deposition mechanism in the VAD process has been investigated. The particle-deposition rate was found to depend largely on the Reynolds number value in the flame stream. Based on the flame stream Schlieren observation results, this Reynolds number relationship to the deposition rate can be explained in terms of two fine glass particle-diffusion effects: One is molecular diffusion and the other is eddy diffusion. Finally, by applying such particle-diffusion effects to the actual VAD process, a 4.5 gr/min preform production rate was attained.  相似文献   

17.
Abstract

In order to achieve a high fiber preform production rate, the deposition mechanism in the VAD process has been investigated. The particle-deposition rate was found to depend largely on the Reynolds number value in the flame stream. Based on the flame stream Schlieren observation results, this Reynolds number relationship to the deposition rate can be explained in terms of two fine glass particle-diffusion effects: One is molecular diffusion and the other is eddy diffusion. Finally, by applying such particle-diffusion effects to the actual VAD process, a 4.5 gr/min preform production rate was attained.  相似文献   

18.
This paper presents the optimal conditions for the ultraviolet laser percussion drilling of alumina materials intended for use in heat sinks. The Taguchi method and grey relational analysis, along with the consideration of multiple quality characteristics, were applied for determining the optimal parameters. The entrance diameter and taper angle of the drilled hole were affected by the material processing parameters, including laser power, pulse duration, focal plane position, and number of pulses. The Taguchi method and grey relational analysis were used for assessing the effects of the operational parameters on multiple performance characteristics. Nine experiments based on an orthogonal array were performed. According to the results, the optimal process parameters were as follows: laser energy density, 3.82 J/cm2; focal plane position, 0.1 mm; number of pulses, 20 shots; and single pulse duration, 3 ms. Analysis of the grey relational grade revealed that the focal plane position was the most dominant parameter.  相似文献   

19.
Microfluidic chambers embedded in silica glass are drilled by water-assisted ablation with a femtosecond laser. The continuous scanning ablation increases the processing speed up to 50 μm/s. Not only may microchambers or microtrenches be obtained at high speed and in one step, but also combined structures consisting of cascaded microchambers and microtrenches may be fabricated. The inner-wall morphology of the microchambers is analyzed by a scanning electron microscope. PACS 87.80.Mj; 52.38.Mf; 82.50.Pt; 42.62.-b; 42.70.Ce  相似文献   

20.
杨谋  孟英峰  李皋  邓建民  李永杰  周玉良 《物理学报》2013,62(17):179101-179101
应用比例积分控制原理将瞬态传热模型预测结果与出口 温度实测数据逐步进行反馈可准确预测原始静态地层温度. 为此, 本文基于井下各控制组件质量、动量及能量守恒原理, 建立了实际井身结构与钻具组合条件下循环和停止循环期间井筒-地层温度分布全瞬态传热模型, 应用全隐式有限差分法进行求解, 并引入比例积分控制原理对比分析实测温度与预测温度的误差范围进而精确、 快速获取原始地层温度. 结合一口深井基础数据计算表明, 套管下入深度改变了井筒-地层间热交换效率, 进而影响了近井壁地层温度分布状况; 同时, 钻井过程中循环和停止循环作业过程改变了井下各控制组件的初始条件与边界条件, 致使近井壁原始地层温度分布距离产生变化. 建立的数学模型和研究方法可为石油钻井、地热井开采及地球深部原始地层温度信息准确、 经济、快速获取提供理论基础. 关键词: 原始地层温度 循环与停止循环 瞬态传热模型 比例积分控制原理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号