首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1967, Coates discovered the electron channelling contrast of backscattered electrons (BSEs) in scanning electron microscopy, and by this the possibility to investigate arrangements of lattice defects in deformed microstructures of materials. Since that time, a straightforward development of the scanning electron microscopes as well as of the electron channelling contrast technique took place. Nowadays, the performance of scanning electron microscopes is high enough that the resolution of electron channelling contrast imaging (ECCI) micrographs is comparable with conventional bright field transmission electron microscopy (TEM) micrographs. In the first part of the present paper, a historical review on the development of the ECCI technique starting from its discovery more than 45 years ago up to the combination with other advanced methods of scanning electron microscopy like electron backscatter diffraction or high-resolution selected area channelling patterning in the last few years is given. Major important investigations using this technique for the visualization of individual lattice defects like stacking faults (SFs) and dislocations or dislocation arrangements are chronologically summarized. The second part demonstrates that nowadays, ECCI micrographs taken in high-resolution scanning electron microscopes can be called high-resolution ECCI (HR-ECCI). It is shown that the resolution of individual SFs and dislocations in the HR-ECCI micrographs is comparable to that of conventional TEM (about 15 nm defect image width). Furthermore, the paper is demonstrating that HR-ECCI micrographs can be obtained for various types of materials after different mechanical loadings and different grain sizes ranging from large grain size of 500 μm (cast steel) down to less than 2 μm (γ-TiAl).  相似文献   

2.
The field of metallurgy has greatly benefited from the development of electron microscopy over the last two decades. Scanning electron microscopy (SEM) has become a powerful tool for the investigation of nano- and microstructures. This article reviews the complete set of tools for crystallographic analysis in the SEM, i.e., electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), and electron channeling contrast imaging (ECCI). We describe recent relevant developments in electron microscopy, and discuss the state-of-the-art of the techniques and their use for analyses in metallurgy. EBSD orientation measurements provide better angular resolution than spot diffraction in TEM but slightly lower than Kikuchi diffraction in TEM, however, its statistical significance is superior to TEM techniques. Although spatial resolution is slightly lower than in TEM/STEM techniques, EBSD is often a preferred tool for quantitative phase characterization in bulk metals. Moreover, EBSD enables the measurement of lattice strain/rotation at the sub-micron scale, and dislocation density. TKD enables the transmitted electron diffraction analysis of thin-foil specimens. The small interaction volume between the sample and the electron beam enhances considerably the spatial resolution as compared to EBSD, allowing the characterization of ultra-fine-grained metals in the SEM. ECCI is a useful technique to image near-surface lattice defects without the necessity to expose two free surfaces as in TEM. Its relevant contributions to metallography include deformation characterization of metals, including defect visualization, and dislocation density measurements. EBSD and ECCI are mature techniques, still undergoing a continuous expansion in research and industry. Upcoming technical developments in electron sources and optics, as well as detector instrumentation and software, will likely push the border of performance in terms of spatial resolution and acquisition speed. The potential of TKD, combined with EDS, to provide crystallographic, chemical, and morphologic characterizations of nano-structured metals will surely be a valuable asset in metallurgy.  相似文献   

3.
Aligned multi-walled carbon nanotubes (MWCNTs) with high purity and bulk yield were achieved on a silicon substrate by an aerosol-assisted chemical vapor deposition. The introduction of specific amounts of water vapor played a key role in in situ controlling the purity and surface defects of the nanotubes. The morphology, surface quality and structure of MWCNTs were characterized by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Crystallinity and defects of the MWCNTs’ were investigated by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. In this work, water vapor was found to provide a weak oxidative environment, which enhanced and purified the MWCNTs’ growth. However, excessive water vapor would inhibit the MWCNTs growth with a poor surface quality. In addition, it has been found that the surface morphology of the CNTs can be modified intentionally through producing some surface defects by tuning the amount of the water vapor, which may offer more nucleation sites on the chemically inert CNT surface for various applications such as catalyst support.  相似文献   

4.
Comparative surface imaging was performed on uncoated fungal spores and stained section-face by field emission scanning electron microscopy with an in-column energy-selective backscattered electron detector. Epoxy resin thin sections (ca. 200 and 500 nm thick) of the osmicated and uranyl acetate/lead citrate-stained fungus were examined with the microscope. Topographical contrast was evident in secondary electron imaging by either a below-lens or an in-lens detector. Meanwhile, low-loss backscattered electron images showed mainly compositional contrast at low accelerating voltages (mostly below 1 kV). With attenuated topographical contrast, several different electron densities could be detected, exhibiting several levels of electron density even on a flat plane of spines. Minute differences in topography on epoxy resin sections as seen by secondary electron imaging represented the periphery of the fungal spores and hyphae. On the other hand, the compositional contrast could be retrieved from stained section-face in low-loss BSE imaging, revealing subcellular entities after contrast inversion. The resolution of low-loss BSE imaging was sufficient to resolve plasma membrane, and various types of vacuoles and vesicles. These results suggest that low-loss backscattered electron imaging could potentially provide compositional information to resolve surface chemical features of uncoated microbial cells and stained section-face with heterogeneous surface compositions.  相似文献   

5.
A new version of the toroidal electron spectrometer installed in a scanning electron microscope is described. The new instrument has made it possible to carry out fundamental and applied research in the field of local nondestructive inspection of micro- and nanoelectronic materials and devices. The topology control of 3D microstructures by backscattered electron tomography is exemplified. A high efficiency of secondary electron energy filtering in monitoring of semiconductor regions locally doped by p- and n-type impurities is demonstrated. A physical substantiation for the high contrast of the doped regions is given. The feasibility of taking electron spectra using a scanning electron microscope in a wide range from slow secondary electrons to elastically scattered ones is proved.  相似文献   

6.
P.J. Phillips  M.J. Mills 《哲学杂志》2013,93(16):2081-2101
Transmission electron microscopy (TEM) has been instrumental in advancing the field of crystalline defect analysis. Conventional TEM imaging techniques, such as bright field (BF), dark field (DF), and weak beam dark field (WBDF or g–3g) imaging, have been well-documented in the scientific literature, with simulation methods readily available for each. The present contribution highlights the use of a field-emission TEM, operated in scanning transmission electron microscopy mode, as a viable tool for defect analysis. Common techniques such as two-beam diffraction contrast and zone axis imaging are applied to defect analysis; both experimental and computational results are presented. Effects of experimental parameters such as camera length, beam divergence angle, and diffraction aperture placement are also discussed and illustrated by both experimental and computed micrographs of stacking faults.  相似文献   

7.
The problem of image contrast production in the backscattered electron (BSE) mode in a scanning electron microscope (SEM) in bulk and film structures is discussed. The considerable influence of the parameters of a semiconductor detector on the image contrast is shown. Calculations for contrast in dependence on the composition of target sections, the energy of primary electrons, and the signal detection technique are presented.  相似文献   

8.
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus – high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1 M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM.  相似文献   

9.
Cross-sectional observation of the oxide scale formed by oxidation of TiC single crystals with (100), (110) and (111) faces at 1500 °C for 30 min in a mixed gas of Ar/O2 (PO2=0.08 kPa) was performed by transmission electron microscope (TEM). The oxide scale was composed of outer (zone 2) and inner (zone 1) subscales. TEM and selected area electron diffraction combined with X-ray energy dispersion analysis showed that the zone 2 consists of rutile and pores and the zone 1 of carbon and titanium oxide, identified as Ti3O5 in the oxide scale formed on the (110) face. Zone 1 formed on the (100) and (111) faces showed crisscross patterns, in contrast to the (110) with the wavy lamellar pattern.  相似文献   

10.
S. Neily  S. Youssef  F. Fournel 《哲学杂志》2013,93(31):4001-4012
The elastic displacement field of a sharply angular dislocation with its two legs parallel to a planar free surface is given in a practical analytical form. Its expression gives access, in transmission electron microscopy (TEM), to computed images of numerous interacting dislocations all located at a distance h close to the free surface. As an application, this field is used repeatedly to study, in dark-field TEM and a g(3g) diffraction mode with g{2?2?0}, the contrast of dissociated triple nodes of a low-angle twist boundary in silicon extended over a (1?1?1) plane. It is shown that free surface elastic effects can influence the contrasts of some 30° partials if h is at the nanometer scale.  相似文献   

11.
Abstract

It is shown that as a result of the Greenwood-Foreman-Rimmer loop punching mechanism applied for helium bubble growth in nickel implanted with 5 keV He+ ions at 273 K, a considerable amount of helium remains outside the bubbles which are visible in a transmission electron microscope (TEM). It is also shown that even when it is assumed that there is an energy barrier with an upper limit equal to the formation energy of a self-interstitial atom, not all implanted helium can be accumulated in the bubbles below the critical dose for blistering.

The experimental observation of bubble growth in a helium pre-implanted nickel specimen during 1 MeV e? irradiation may demonstrate that indeed a significant amount of helium remains between the bubbles visible in TEM.  相似文献   

12.
Lorentz transmission electron microscopy (LTEM) combined with in-situ magnetizing experiments is a powerful tool for the investigation of the magnetization of the reversal process at the micron scale. We have implemented this tool on a conventional transmission electron microscope (TEM) to study the exchange anisotropy of a polycrystalline Co35Fe65/NiMn bilayer. Semi-quantitative maps of the magnetic induction were obtained at different field values by the differential phase contrast (DPC) technique adapted for a TEM (SIDPC). The hysteresis loop of the bilayer has been calculated from the relative intensity of magnetic maps. The curve shows the appearance of an exchange-bias field reveals with two distinct reversal modes of the magnetization: the first path corresponds to a reversal by wall propagation when the applied field is parallel to the anisotropy direction whereas the second is a reversal by coherent rotation of magnetic moments when the field is applied antiparallel to unidirectional anisotropy direction.  相似文献   

13.
Diffraction patterns produced by quasi-elastically backscattered electrons focused in a thin single-crystal Si(100)2×1 near-surface layer have been studied. The measurements performed in the 0.6–2-keV range are compared with calculations made in the single-scattering cluster approximation. This model is shown to describe adequately the experiment. An analysis is made of the relation among the diffraction patterns observed for different silicon faces, and of the effect of the primary-electron beam orientation. The relations governing the focusing of quasi-elastically backscattered electrons escaping from the crystal along the main crystallographic directions have been established. The various aspects of the effect for backscattered electrons undergoing inelastic interaction with the electron subsystem of the crystal have been investigated. Fiz. Tverd. Tela (St. Petersburg) 40, 1364–1369 (July 1998)  相似文献   

14.
This paper reports the feasibility of nano-oxide precipitate formation in Fe–Cr alloy by ion implantation synthesis. High contents of Al+ and O+ ions were implanted into thin films of high purity Fe10%Cr alloy at room temperature and were studied by transmission electron microscopy (TEM) and atom probe tomography (APT). In contrast, to the common two-stage implantation/annealing scheme of precipitate ensemble synthesis by ion beams, cluster formation took place at the implantation stage in our study, requiring no subsequent high-temperature annealing. The post-implantation microstructural examination revealed in the as-implanted thin foil an array of precipitates with diameters in the range of 3–30?nm. The precipitate number density distribution was found to depend on the foil thickness. The precipitate enrichment with both Al and O was confirmed by the energy-filtered TEM analysis. Judging from the electron diffraction pattern and high-resolution TEM analysis, the crystal lattice of precipitates corresponds to some cubic modification of aluminium-rich oxide or pure aluminium oxide. The precipitate lattice alignment with the host matrix was revealed for at least a part of precipitates. The analysis of APT data using cluster detection algorithm indicates the presence of local zones enriched in Al and O, even in those areas of as-implanted samples where no clusters were visible by TEM.  相似文献   

15.
The variation of surface state of SUS-304L stainless steel with heat treatment in a vacuum of 10?9 Torr was observed by the ultra high vacuum low energy scanning electron microscope (UHVLESEM) by detecting the absorption electron current. The absorption electron current was very sensitive to the surface state and a large effect of the electron beam irradiation was observed. The variation of the absorption electron current with the surface segregation was measured within a microscopical dimension of 0.3 microm on a selected area of the scanning electron microscopic image. At the same time, the surface state was characterized by Auger electron spectroscopy and relations between surface states and the absorption electron current were discussed in relation to the secondary electron and backscattered electron yields.  相似文献   

16.
L. Jaworska 《高压研究》2013,33(3-4):531-533

The problems connected with producing diamond composites with 30 wt.% of bonding phase in form of: SiC, TiC, and Ti 3 SiC 2 are presented in the paper. Increasing the fraction of the bonding phase within the composite generally helps to reduce internal stresses. Composites were sintered at pressure 8.0 - 0.2 GPa and temperature of 2070 - 50 K using the Bridgman type high pressure apparatus. Interactions in the diamond-SiC, the diamond-TiC, and the diamond-Ti 3 SiC 2 systems were studied by means of transmission electron microscope (TEM) and X-ray diffraction. Density was measured pycnometrically. The wear resistance studies of these composites were carried out using pin - on disc type laboratory equipment. Hardness was measured with Vickers apparatus. Results of measurements of physical and mechanical properties are reported.  相似文献   

17.
Abstract

A field ion microscopy (FIM) and transmission electron microscopy (TEM) investigation of radiation damage in tungsten after heavy ion bombardment has been carried out. Field ion specimens of tungsten were irradiated with 180–230 keV Xe+ ions. The irradiation doses were varied between 4 × 1011 and 4 × 1012 ions/cm2. The irradiated specimens were examined in FIM. Experiments combining both TEM and FIM were performed in order to compare the results obtainable by these two methods. The distribution of defects visible by TEM was inhomogeneous. The influence of the imaging field in FIM on the defects visible in TEM is discussed.  相似文献   

18.
The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy.  相似文献   

19.
Silver (Ag) nanoparticles were obtained when Ag microparticles were exposed to an electron beam in a transmission electron microscope (TEM). Results from TEM characterization indicated that the morphologies of the prepared Ag nanoparticles were quasi-circular, and the sizes were mainly in the range of 5–60 nm. The effect of irradiation time (t) on size and distribution of Ag nanoparticles was investigated. It was found that the sizes of Ag nanoparticles increased with the increase of t. The bigger Ag nanoparticles were near the Ag microparticle and the smaller ones were far from it. In addition, these Ag nanoparticles were monodisperse. This approach offered a new route for preparing Ag nanoparticles under electron beam irradiation, and the forming process of Ag nanoparticles was explained by the nucleation-growth mechanism.  相似文献   

20.
A large-dimensional bulk nanocrystalline phase-based Fe–Al–Cr alloy with 10?wt.% Cr, which was about 200?mm in diameter and 10?mm in thickness, was prepared by an aluminothermic reaction casting and followed annealing at 1000?°C. Microstructures of the alloy were investigated by optical microscope, electron probe microscope, scanning electron microscope attached with electron backscattered diffraction, X-ray diffraction and transmission electron microscope. The magnetization curves of the alloy were tested by Lake Shore 7410 vibrating sample magnetometer. Compressive properties of the alloy were tested. The results show the alloy was consisted of a Fe–Al–Cr nanocrystalline matrix, Cr7C3 phase and contaminants in micrometre. Average grain size of the nanocrystalline matrix was 19?nm. Volume fraction of the Cr7C3 phase in the alloy was about 4.5%. After annealing, the saturated intensity of magnetization and the specific magnetic susceptibility of the alloy increased slightly from 99 emu/g and 0.083 emu/g?Oe to 104 emu/g and 0.113 emu/g?Oe, respectively. Compressive strength of the alloy was 1200?MPa and much higher than that of the small-scale nanocrystalline alloy and alloy with grains in micrometre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号