共查询到20条相似文献,搜索用时 109 毫秒
1.
G. Gottstein D.A. Molodov E. Rabkin L.S. Shvindlerman I. Snapiro 《Interface Science》2002,10(4):279-285
The effect of an induced magnetic moment due to grain boundary motion in a magnetic field was studied theoretically in a microscopic and a mesoscopic approximation. It was found that the induced moment generates a drag force on the boundary, which depends on the orientation of the magnetic field with regard to the crystal axis, as observed experimentally. However, the magnitude of the theoretically predicted dependency is much smaller than experimentally observed and even opposite with regard to the orientation dependence. Therefore, the electromagnetic drag can be neglected in comparison with other driving forces for grain boundary motion, but the effect may play a role for fast moving dislocations in a magnetic field. 相似文献
2.
The studies of three different laboratories on grain boundary migration in Fe-3wt.%Si alloys are presented. In all cases bicrystal techniques employing capillarity as driving force were used. [100] tilt boundaries were studied in the temperature range from 1223 K to 1373 K, and [110] tilt boundaries in the range from 1220 K to 1625 K. Proportionality between grain boundary velocity and driving force was confirmed. All data fulfil a linear relation between activation enthalpies and logarithms of the pre-exponential factors, corresponding to a compensation temperature of 1386 K where all boundaries theoretically should possess the same mobility. A considerably lower activation enthalpy was found in one case for an asymmetrical grain boundary compared to the symmetrical boundary of the same misorientation. High values of activation enthalpy of migration were found for special [100] boundaries compared to general ones although an opposite tendency was also observed for [100] boundaries. 相似文献
3.
Internal friction measurements were performed on various ?111? tilt and twist grain boundaries in high-purity Al bicrystals. The temperature dependence of the grain boundary internal friction peak was determined, and the activation parameters of grain boundary relaxation were obtained. These parameters were found to change in a wide range depending on boundary geometry. The activation enthalpy of boundary relaxation and the pre-exponential factor of the relaxation time are related according to the compensation effect. The results are discussed in terms of the model of correlated relaxations. Bicrystals with vicinal Σ3 boundaries were observed to behave like single crystals, i.e. an internal friction peak did not appear. This evidences that both coherent and incoherent (60° ?111? tilt) twins possess a high mechanical resistance. 相似文献
4.
The formation behavior of the fine-grain region alloyed with Zn due to diffusion induced recrystallization (DIR) in the Cu(Zn) system was experimentally examined for the surfaces polished in different manners using a Cu bicrystal containing a [1 1 0] twist boundary with a misorientation angle of = 46° zincified at 673 K for 2.88 × 104 s with Cu-15 wt% Zn and Cu-30 wt% Zn alloys by a capsule zincification technique. The extent and morphology of the fine-grain DIR region vary depending on the surface conditions and the composition of the Zn-source Cu-Zn alloy. For the specimen with the surface electrolytically polished in an etchant consisting of 20 vol% of nitric acid and 80 vol% of methanol, no DIR region was formed on the whole surface when the Cu-15 wt% Zn alloy was used as a Zn source.In order to observe the morphology of the moving grain boundary owing to diffusion induced grain boundary migration (DIGM) without influences of DIR, Cu bicrystals with [1 1 0] twist boundaries of = 32 ( 27), 39 ( 9), 46, 51 ( 11) and 55° were electrolytically polished in the etchant mentioned above. The polished Cu bicrystals were zincified at 673 K for 2.88 × 104 s using the Cu-15 wt% Zn alloy as a Zn source. Remarkable surface relief and clear slip bands were recognized on the surfaces due to DIGM for the specimens with the 32 ( 27) and 46° boundaries. The moving boundary became zigzag owing to the slip bands parallel to the moving direction. On the other hand, such surface relief and slip bands were not observed for the specimens with the 39 ( 9), 51 ( 11) and 55° boundaries. The moving boundary was considerably irregular for = 39° whereas rather smooth for = 51 ( 11) and 55°. The migration behavior of the grain boundary was not affected by the interruption of the zincification. 相似文献
5.
The influence of intragranular slip on grain boundary sliding is studied in originally compatible zinc bicrystals with symmetric tilt boundary. The experiment is designed to separate different effects of intragranular slip on the boundary sliding and establish their mechanisms. Grain boundary sliding with and without development of intragranular slip is observed. The rate of sliding accompanied by slip is more than five times of that without slip. A good correlation between the boundary sliding and intragranular slip prior to slide hardening is established. Slide hardening followed by the negative sliding near one end of the boundary and strain hardening in the boundary vicinity, are observed at the last stages of deformation. For the case of formation of slip induced glissile grain boundary dislocations of opposite signs the possibility of their contribution to total grain boundary sliding, is analyzed. The effect of the increase in the rate of sliding is explained in terms of the accommodation of sliding by slip and appearance of additional glissile grain boundary dislocations of one sign due to strain incompatibility. Contribution of these different dislocation mechanisms to the increase in the sliding rate is determined for the stage of deformation preceding slide hardening. It is supposed that the effect of slide hardening and negative sliding as well as boundary curving is created by non-smooth boundary and small degree of incompatibility caused by straining. 相似文献
6.
7.
Study of magnetoresistance and conductance of bicrystal grain boundary in La0.67Ba0.33MnO3 thin film
La0.67Ba0.33MnO3 (LBMO) thin film is deposited on a 36.7°C SrTiO3 bicrystal substrate using laser ablation technique. A microbridge is created across bicrystal grain boundary and its characteristics
are compared with a microbridge on the LBMO film having no grain boundary. Presence of grain boundary exhibits substantial
magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears
at temperature T>175 K. At low temperature, I-V characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of temperature dependence of dynamic
conductance-voltage characteristics of the bicrystal grain boundary indicates that at low temperatures (T<175 K) carrier transport across the grain boundary in LBMO film is dominated by inelastic tunneling via pairs of manganese
atoms and tunneling through disordered oxides. At higher temperatures (T>175 K), magnetic scattering process is dominating. Decrease of bicrystal grain boundary contribution in magnetoresistance
with the increase in temperature is due to enhanced spin-flip scattering process. 相似文献
8.
Wetting of 975 grain boundaries (GB's) by liquid Cu in an iron-based alloy has been studied as a function of the five macroscopic degrees of freedom (DoF's) of grain boundary character. In addition, models of GB energy in terms of all five DoF's, and of anisotropic solid-liquid interfacial energy have been developed. The experimentally observed wetting behavior is interpreted in terms of the model, and it is shown that reasonable overall agreement is obtained between experimental results and model predictions. 相似文献
9.
Hiroyuki Miyamoto Hirohito Koga Takuro Mimaki Satoshi Hashimoto 《Interface Science》2001,9(3-4):281-286
Behaviour of stress corrosion cracking (SCC) in a series of pure copper bicrystals with a symmetrical 111-tilt boundary has been investigated. Tests were performed by the slow strain rate technique (SSRT) in 1M NaNO2 solutions. The small-angle tilt bicrystals fractured in both intergranular and transgranular manners accompanied by a large amount of plastic strain to fracture while the large-angle bicrystals fractured in almost intergranular manner with a smaller plastic strain. Susceptibility of SCC increases with increasing misorientation and becomes relatively constant in large-angle grain boundaries. The local minima appeared at the 7(321) and 3(211) boundaries, suggesting that the susceptibility was partially affected by grain boundary energy. Stress concentration generated by the pile-up of trapped dislocations at the grain boundary could account for the high susceptibility of the intergranular SCC in large-angle grain boundaries. 相似文献
10.
11.
Critical current density behaviors across a grain boundary inclined to current with different angles in YBa_2Cu_3O_(7-δ) bicrystal junctions
下载免费PDF全文

The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa_2Cu_3O_(7-δ) bicrystal junctions in magnetic fields are investigated.There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field:(i) the GB plane area determines the current carrying cross section;(ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force.Furthermore,the vortex motion in a bicrystal GB is studied by investigating transverse(Hall) and longitudinal current–voltage characteristics(I–V_(xx) and I–V_(xy)).It is found that the I–V_(xx) curve diverges from linearity at a high driving current,while the I–V_(xy) curve keeps nearly linear,which indicates the vortices inside the GB break out of the GB by Lorentz force. 相似文献
12.
In polycrystalline materials that fail by transgranular cleavage, it is known that crystallographic misorientation of preferred fracture planes across grain boundaries can provide crack growth resistance; despite this, the micromechanisms associated with crack transmission across grain boundaries and their role in determining the overall fracture resistance are not well understood. Recent studies on diverse structural materials such as steels, aluminum alloys and intermetallics have shown a correlation between fracture resistance and the twist component of grain misorientation. However, the lack of control over the degree and type of misorientation in experimental studies, combined with a dearth of analytical and computational investigations that fully account for the three-dimensional nature of the problem, have precluded a systematic analysis of this phenomenon. In this study, this phenomenon was investigated through in situ crack propagation experiments across grain boundaries of controlled twist misorientation in zinc bicrystals. Extrinsic toughening mechanisms that activate upon crack stagnation at the grain boundary deter further crack propagation. The mechanical response and crack growth behavior were observed to be dependent on the twist angle, and several accommodation mechanisms such as twinning, strain localization and slip band blocking contribute to fracture resistance by competing with crack propagation. Three-dimensional finite element analyses incorporating crystal plasticity were performed on a stagnant crack at the grain boundary that provide insight into crack-tip stress and strain fields in the second grain. These analyses qualitatively capture the overall trends in mechanical response as well as strain localization around stagnant crack-tips. 相似文献
13.
A zinc oxide bicrystal, in which the grain boundary was doped with praseodymium oxide, was prepared by hot pressing. The grain boundary showed characteristic varistor breakdown. Scanning electron microscope (SEM) observation revealed that the amount of visible praseodymium oxide along the interface was variable. Charge collection microscopy, using the remote electron beam induced current (REBIC) configuration, was carried out and the grain boundary was found to be electrically active in the praseodymium oxide rich regions, showing contrast consistent with the presence of a double Schottky barrier (DSB). In Pr poor regions the DSB contrast was lost. The observations are consistent with the idea of barrier enhancement with doping in varistors. 相似文献
14.
15.
P. Zieba 《Interface Science》2003,11(1):51-58
The paper summarizes recent experiments on diffusion at migrating grain boundaries (GBs) occurring during discontinuous reactions, like discontinuous precipitation (DP) and diffusion induced grain boundary migration. Analytical electron microscopy was used for measurements of the solute concentration across individual solute-depleted lamellae. These data combined with information on the growth velocity and the thickness of an individual lamella allowed the determination of the local values of the diffusivities of the moving reaction front of the DP cell in Al–Zn, Ni–Sn, Cu–In and Co–Al alloys. The obtained diffusivities and activation energies are very similar to the relevant parameters of stationary GBs. This allows us to conclude that there is no significant difference in the rates of diffusion along migrating and stationary GBs in the systems investigated. It is therefore believed that the diffusivity values of the moving reaction front of the DP reaction can be a source of reliable information on interfacial diffusion characteristics, especially in systems and/or at temperatures where radiotracer data are not readily available. 相似文献
16.
Hyun Uk Hong Hi Won Jeong In Soo Kim Baig Gyu Choi Young Soo Yoo Chang Yong Jo 《哲学杂志》2013,93(22):2809-2825
The mechanism of serrated grain boundary formation and its effect on liquation behaviour have been studied in a wrought nickel-based superalloy – Alloy 263. It was newly discovered that grain boundaries are considerably serrated in the absence of γ?′-phase or M23C6 at the grain boundaries. An electron energy-loss spectroscopy study suggests that serration is triggered by the discontinuous segregation of C and Cr atoms at grain boundaries for the purpose of relieving the excessive elastic strain energy. The grain boundaries serrate to have specific segments approaching one {111} low-index plane at a boundary so that the interfacial free energy of the grain boundary can be decreased, which may be responsible for the driving force of the serration. The serrated grain boundaries effectively suppress grain coarsening and are highly resistant to liquation due to their lower wettability resulting from a lower interfacial energy of the grain boundary. 相似文献
17.
Interdiffusion processes in thin epitaxial polycrystalline Pd/Ag films in the temperature range 20–500°C are studied by transmission electron microscopy, electron diffraction and electrical resistance methods. Homogenization is investigated both during condensation and under conditions of postcondensation annealing.The basic processes of homogenization associated with GB diffusion along migrating boundaries. It is found that in real polycrystal films with wide spectrum of grain sizes few mechanisms can occur simultaneously or subsequently: recrystallization induced diffusion, diffusion induced grain boundary migration, activation of bulk diffusion in fine grain clusters, bulk diffusion through interphase boundary. The conditions for prevailing one of them can be provided by changing condensation and postcondensation annealing temperatures or by choosing certain grain size. 相似文献
18.
多晶材料晶粒生长粗化过程的相场方法模拟 总被引:2,自引:0,他引:2
基于采用晶体有序化程度参量ψ和晶体学取向θ来表示多晶粒结构的相场模型,利用自适应有限元方法模拟了多晶材料等温过程中的晶粒粗化现象.模拟结果显示,在曲率作用下,通过晶界迁移弯曲晶界逐渐平直化,小晶粒逐渐被大晶粒吞并,当晶界之间的取向差较小时,满足一定能量和几何条件的两晶粒在界面能作用下会发生转动,合并为单个晶粒.模拟结果与实验结果符合较好.因此,该相场模型可以很好地用来模拟固态相变中多晶材料的生长粗化等现象.关键词:相场晶界迁移晶粒转动粗化 相似文献
19.
Vacancy Generation During Grain Boundary Migration 总被引:1,自引:0,他引:1
20.
AbstractThe grain boundaries (GBs) present in polycrystalline materials are important with respect to materials behaviour and properties. During the transient stage of oxidation, the higher GB diffusivity results in heterogeneous oxidation structures in the form of oxide ridges that emerge along the alloy GBs. In an attempt to delve into the more fundamental aspects of the GBs, such as GB energy, the size of the oxide ridges was quantitatively measured by atomic force microscopy on the post oxidation surface of a Fe-22 wt % Cr alloy after an oxidation exposure at 800 °C in dry air. The GB diffusivity was calculated utilising the ridge size data and the relationship between the GB diffusivity and the GB characteristics was determined. Furthermore, the GB energy was calculated from the GB diffusivity data, also to make comparison with the data available in the literature. The absolute value of the calculated GB energy was quite close to the values reported in the literature. However, compared to the extremely low temperature (0 K) data-set from the literature, the data-set obtained from this study showed much less spread. The smaller variation range may be attributed to the higher temperature condition (1073 K) in this study. 相似文献