首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Isik  E. Tugay  N. M. Gasanly 《哲学杂志》2016,96(24):2564-2573
Optical properties of GaSe single crystals have been investigated using temperature-dependent transmission and room temperature reflection measurements in the wavelength range of 380–1100 nm. The analysis of the absorption data at room temperature showed the existence of indirect transitions in the crystal with energy band gap of 1.98 eV. Temperature dependence of the transmission measurements revealed the shift of the absorption edge toward lower energy as temperature is increased from 10 to 280 K. The rate of change of the indirect band gap was found as γ = ?6.6 × 10?4 eV/K from the analysis of experimental data under the light of theoretical relation giving the band gap energy as a function of temperature. The absolute zero value of the band gap energy and Debye temperature were calculated from the same analysis. The Wemple–DiDomenico single-effective-oscillator model applied to refractive index dispersion data was used to determine the oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index values.  相似文献   

2.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

3.
The optical properties of Tl4Ga3InSe8 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 500–1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.94 and 2.20 eV, respectively. Transmission measurements carried out in the temperature range of 10–300 K revealed that the rate of change of the indirect band gap with temperature is γ=−4.1×10−4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.03 eV. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.10 eV, 23.17 eV, 6.21×1013 m−2 and 2.58, respectively. From X-ray powder diffraction study, the parameters of monoclinic unit cell were determined.  相似文献   

4.
Single crystals of the layered compound TlInS2 were grown by direct synthesis of their constituents. The spectral and optical parameters have been determined using spectrophotometric measurements of transmittance and reflectance in the wavelength range 200–2500 nm. Absorption spectra of thin layers of TlInS2 crystals are used to study the energy gap and the interband transitions of the compound in the energy region 2–2.4 eV. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal one in the transmitted region. The direct and indirect band gaps were determined to be 2.34 and 2.258 eV, respectively. Photoconductivity measurements at room temperature resolve the structure that can be identified with the optical transition.  相似文献   

5.
The optical properties of the Bridgman method grown Ga4Se3S crystals have been investigated by means of room temperature, transmittance and reflectance spectral analysis. The optical data have revealed an indirect allowed transition band gap of 2.08 eV. The room temperature refractive index, which was calculated from the reflectance and transmittance data, allowed the identification of the dispersion and oscillator energies, static dielectric constant and static refractive index as 21.08 and 3.85 eV, 6.48 and 2.55, respectively.  相似文献   

6.
The long wavelength tail of the fundamental absorption in NaClO3 and KClO3 crystals has been analysed based on the theory of band to band transitions of Bardeen et al.[8] developed in the case of semi-conducting crystals. Evidence of phonon involvement in the transitions giving an indirect band gap is observed. The energies of the phonons involved in the process are the same for both the crystals, and agree well with combinations of prinicple frequencies of ClO3? ion, their overtones and also lattice phonons. The indirect band gap in these crystals varies with temperature more or less linearly and the rate of variation is ?3·8 × 10?4 eV/K and ?5·0 × 10?4 eV/K for sodium chlorate and potassium chlorate respectively.  相似文献   

7.
Spectral dependences of the relative permittivity ɛ = ɛ1iɛ2 of a uniaxial weak ferromagnet FeBO3 are measured for two principal polarizations in the energy range 0.6–5.6 eV. The positions have been determined for the charge-transfer transitions that make the main contribution to absorption above the bandgap and determine the refractive-index dispersion below the bandgap. The isotropic magnetic contribution to the refractive index has been detected by studying the temperature dependence of the refractive index in the range 100–700 K; its value (≈2 × 10−2) is found to be record high for magnetic dielectrics. The energy shift of the effective oscillator, which characterizes the shift of the positions of the charge-transfer transitions due to magnetic ordering, is determined from these data within the framework of a single-oscillator model. The value of the exchange striction in FeBO3 is determined from optical measurements.  相似文献   

8.
Optical properties of CuIn5S8 crystals grown by Bridgman method were investigated by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficients were obtained from the analysis of ellipsometry experiments performed in the 1.2–6.2 eV spectral region. Analysis of spectral dependence of the absorption coefficient revealed the existence of direct band gap transitions with energy 1.53 eV. Wemple–DiDomenico and Spitzer–Fan models were used to find the oscillator energy, dispersion energy, zero-frequency refractive index and high-frequency dielectric constant values. Structural properties of the CuIn5S8 crystals were investigated using X-ray diffraction and energy dispersive spectroscopy analysis.  相似文献   

9.
Cu2S thin films deposited on glass substrate by chemical bath deposition were studied at different deposition temperatures and times. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), the Hall Effect measurement system and UV-Vis absorption spectroscopy indicate that both deposition temperature and time are important to obtain polycrystalline thin films. XRD showed that the polycrystalline Cu2S thin films have monoclinic structure. Meanwhile, the structural variations were analyzed using SEM. EDX analysis results of the thin film showed that the atomic ratio of Cu/S was close to 2:1. It was found from the Hall Effect measurement that the resistivity varied from 4.59?×?10?3 to 13.8?×?10?3 (Ω?cm). The mobility values of the Cu2S thin films having p-type conductivity varied from 15.16 to 134.6?cm2/V.s. The dark electrical resistivity measurements were studied at temperatures in the range 303–423?K. The electrical activation energies of Cu2S thin films were calculated by using Arrhenius plots, from which two different activation energy values are estimated for each thin film. Using UV-Vis absorption spectroscopy (Ultraviolet/visible), the direct and indirect allowed optical band gap values were determined to lie between 2.16 and 2.37?eV and 1.79 and 1.99?eV, respectively. In addition, the values of the refractive index (n) and the extinction coefficient (k) were determined.  相似文献   

10.
Based on the density functional theory(DFT),the electronic structures and optical properties of Mg2Pb are calculated by using the local density approximation(LDA)and plane wave pseudo-potential method.The calculation results show that the indirect band gap width of Mg2Pb is 0.02796 eV.The optical properties of Mg2Pb have isotropic characteristics,the static dielectric function of Mg2Pb is1(0)=10.33 and the refractive index is n0=3.5075.The maximum absorption coefficient is 4.8060×105cm 1.The absorption in the photon energy range of 25–40 eV approaches to zero,shows the optical colorless and transparent behaviors.  相似文献   

11.
Single crystal of potassium aluminum sulfate dodecahydrate (potash alum) was grown by the slow evaporation technique of supersaturated aqueous solution at room temperature. The obtained crystal was characterized by using powder X-ray diffraction, DSC, TGA, electrical conductivity, optical transmittance and optical reflectance measurements. Structural and thermal analyses were performed on potash alum crystal. The electrical conductivity of potash alum as electrolyte sample was 1.894 × 106 S/cm. The optical transition and optical band gap energy of potash alum crystal were studied for the first time. Direct and indirect optical band gap energies were 5.75 and 4.50 eV respectively. Extinction coefficient, refractive index, real and imaginary dielectric constants and optical conductivity were calculated for potash alum crystal at a range of photon energies between 1.4 and 6.2 eV. Normal dispersion parameters of potash alum crystal were calculated for the first time.  相似文献   

12.
Thin films of In-doped Ge-S in the form of Ge35In8S57 with different film thickness were deposited using an evaporation method. The X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature for these films. Some optical constants were calculated at a thickness of 150, 300, 450 and 900?nm and annealing temperature of 373, 413, 437 and 513?K. Our optical observations show that the mechanism of the optical transition obeys the indirect transition. It was found that the energy gap, Eg, decreases from 2.44 to 2.20?eV with expanding the thickness of the film from 150 to 900?nm. On the other hand, it was found that Eg increases with annealing temperature from 373 to 513?K. The increment in the band gap can be attributed to the gradual annealing out of the unsaturated bonds delivering a decreasing the density of localized states in the band structure. Using the single oscillator model, the dispersion of the refractive index is described. The dispersion constants of these films were calculated with different both thickness and annealing temperatures. Additionally, both of nonlinear susceptibility, χ(3) and nonlinear refractive index, n2 were calculated.  相似文献   

13.
Cr doped CdO thin films were deposited on glass substrates by reactive DC magnetron sputtering with varying film thickness from 250 to 400 nm. XRD studies reveal that the films exhibit cubic structure with preferred orientation along the (2 0 0) plane. The optical transmittance of the films decreases from 92 to 72%, whereas the optical energy band gap of the films decreased from 2.88 to 2.78 eV with increasing film thickness. The Wemple–DiDomenico single oscillator model has been used to evaluate the optical dispersion parameters such as dispersion energy (Ed), oscillator energy (Eo), static refractive index (no) and high frequency dielectric constant (ε). The nonlinear optical parameters such as optical susceptibility (χ(1)), third order nonlinear optical susceptibility (χ(3)) and nonlinear refractive index (n2) of the films were also determined.  相似文献   

14.
Optical absorption in MnIn2S4 single crystals has been studied. Direct and indirect optical transitions are found to occur at photon energies of 1.90?C2.16 eV in the temperature range of 80?C342 K. The temperature dependence of the band gap is determined; its temperature coefficients E gd and E gi are found to be ?4.84 × 10?4 and ?6.33 × 10?4 eV/K, respectively. The electron-phonon interaction is the main mechanism of the temperature shift of the intrinsic-absorption edge. MnIn2S4 single crystals exhibit anisotropy in polarized light at the absorption edge in the temperature range of 90?C190 K; the nature of this anisotropy is explained.  相似文献   

15.
Chalcogenide glass Se55Ge30As15 have amorphous structure in both as-deposited and annealed conditions. The optical properties of the as-deposited and annealed films were studied using spectrophotometric measurements of transmittance, T(λ), and reflectance, R(λ), at normal incidence of light in the wavelength range 200–2500 nm. Neither annealing temperature nor film thickness can influence spectral response on refractive index and absorption index of films. The type of electronic transition responsible for optical properties is indirectly allowed transition with energy gap of 1.94 eV and phonon energy of 40 meV. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple–Didomenico (WD) model. The width of band tails of localized states into the gap (ΔE), the single oscillator energy (Eo), the dispersion energy (Ed), the optical dielectric constant (ε), the lattice dielectric constant (εL), the plasma frequency (ωp) and the free charge carrier concentration (N) were estimated.  相似文献   

16.
In the case of NaClO3 and KClO3 crystals, analysis of the long wavelength tail of their fundamental absorption revealed the active participation of the internal vibrations of the chlorate ion (Part I). In order to test the validity of the above interpretation the absorption spectra of two more halates with different anions namely sodium bromate and sodium iodate are analysed in a manner similar to that given in Part I. It is found that the principle internal vibrations of bromate and iodate ions are involved in the indirect transitions. The variation of indirect band gap with temperature is found to be ?2·5 × 10?4 eV/K and ?2·9 × 10?4 eV/K for sodium bromate and sodium iodate respectively.  相似文献   

17.
Optical absorption in single crystals of tin sulfide has been studied at many temperatures between 100 and 300 °K, in the wavelength range 2·2–0·8 μ. From the interference fringe patterns the absorption coefficient, reflection coefficient and index of refraction as a function of wavelength were determined for two light polarizations (εa and εb). From an analysis of the data, indirect band gaps of 1·142 and 1·095 eV were found for the two directions of polarization. Also it was found that the phonon assisted transitions required the participation of two phonons at different energy thresholds with energies 0·033 or 0·038 eV and 0·082 or 0·113 eV, with reference to the two axis. The temperature dependence of the indirect band gap for each direction of light polarization is linear with a slope ?4·05 × 10?3eV and ?4·37 × 10?3 eV respectively.  相似文献   

18.
Spectral dependences of the relative permittivity ɛ = ɛ1iɛ2 of a uniaxial weak ferromagnet FeBO3 are measured for two principal polarizations in the energy range 0.6–5.6 eV. The positions have been determined for the charge-transfer transitions that make the main contribution to absorption above the bandgap and determine the refractive-index dispersion below the bandgap. The isotropic magnetic contribution to the refractive index has been detected by studying the temperature dependence of the refractive index in the range 100–700 K; its value (≈2 × 10−2) is found to be record high for magnetic dielectrics. The energy shift of the effective oscillator, which characterizes the shift of the positions of the charge-transfer transitions due to magnetic ordering, is determined from these data within the framework of a single-oscillator model. The value of the exchange striction in FeBO3 is determined from optical measurements. Original Russian Text ? P.A. Markovin, A.M. Kalashnikova, R.V. Pisarev, Th. Rasing, 2007, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 11, pp. 822–827.  相似文献   

19.
A high-quality ZnNb2O6 single-crystal grown by optical floating zone method has been used as a research prototype to analyze the optoelectronic parameters by measuring the absorption coefficient and transmittance spectra along the b-axis from 200 nm to 1000 nm at room temperature. The optical interband transitions of ZnNb2O6 have been determined as a direct transition with a band gap of 3.84 eV. The refractive index, extinction coefficient, and real and imaginary parts of the complex dielectric constants as functions of the wavelength for ZnNb2O6 crystal are obtained from the measured absorption coefficients and transmittance spectra. In the Urbach tail of 3.16–3.60 eV, the validity of the Cauchy–Sellmeier equation has also been evaluated. Using the single effective oscillator model, the oscillator energy Eo is found to be 4.77 eV. The dispersion energy Ed is 26.88 eV and ZnNb2O6 crystal takes an ionic value.  相似文献   

20.
The structure of the thermally evaporated cobalt phthalocyanine (CoPc) thin film in the β-form is investigated, and shows a single strong peak indicating preferential orientation in the (1 0 0) direction. Some structural parameters such as crystallite grain size, dislocation density and the number of crystallites per unit surface area are determined.The spectral parameters are determined by applying the electronic orbital transitions.But the optical parameters are deduced using band-model consideration for thin films of Pc.The spectral and optical parameters have also been investigated by using the spectrophotometric measurements of transmittance and reflectance in the wavelength range 200–2500 nm.The absorption spectra recorded in the UV–VIS region show two absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q-band. The Q-band shows its characteristic splitting (Davydov splitting) with ΔQ=0.23 eV.Some of the important spectral parameters, namely optical absorption coefficient (α), molar extinction coefficient (molar), oscillator strength (f), electric dipole strength (q2) and absorption half bandwidth (Δλ) of the principle optical transitions have been evaluated.The fundamental and the onset indirect energy gaps could be estimated as 2.90 + or − 0.05 and 1.51 eV, respectively.The refractive index showed an anomalous dispersion in the absorption region as well as normal dispersion in the transparent region. From analysis of dispersion curves, the dielectric constants, the dispersion parameters and the molar polarizability were obtained.All the above parameters were obtained for films as deposited and as annealed. No remarkable annealing effect on many parameters was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号