首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The results of self-consistent, spin-polarized LMTO band structure calculations are shown for the compounds Ni3Pt and NiPt3, ofL12 (Cu3Au) structure. Lattice constants are reported together with bulk moduli, and the electronic structure is studied in relation to magnetism in both cubic compounds. Covalent magnetism is shown to act against the magnetization in Ni3Pt.  相似文献   

2.
A new method for generating spin-polarized currents in topological insulators has been proposed and investigated. The method is associated with the spin-dependent asymmetry of the generation of holes at the Fermi level for branches of topological surface states with the opposite spin orientation under the circularly polarized synchrotron radiation. The result of the generation of holes is the formation of compensating spin-polarized currents, the value of which is determined by the concentration of the generated holes and depends on the specific features of the electronic and spin structures of the system. The indicator of the formed spin-polarized current can be a shift of the Fermi edge in the photoelectron spectra upon photoexcitation by synchrotron radiation with the opposite circular polarization. The topological insulators with different stoichiometric compositions (Bi1.5Sb0.5Te1.8Se1.2 and PbBi2Se2Te2) have been investigated. It has been found that there is a correlation in the shifts and generated spin-polarized currents with the specific features of the electronic spin structure. Investigations of the graphene/Pt(111) system have demonstrated the possibility of using this method for other systems with a spin-polarized electronic structure.  相似文献   

3.
The adsorption of H2O on clean and K-covered Pt(111) was investigated by utilizing Auger, X-ray and ultra-violet photoemission spectroscopies. The adsorption on Pt(111) at 100–150 K was purely molecular (ice formation) in agreement with previous work. No dissociation of this adsorbed H2O was noted on heating to higher temperatures. On the other hand, adsorption of H2O on Pt(111) + K leads to dissociation and to the formation of OH species which were characterized by a work function increase, an O 1s binding energy of 530.9 eV and UPS peaks at 4.7 and 8.7 eV below the Fermi level. The amount of OH formed was proportional to the K coverage for θK > 0.06 whereas no OH could be detected for θ? 0.06. Dissociation of H2O occurred already at T = 100 K, with a sequential appearance of O 1s peaks at 531 and 533 eV representing OH and adsorbed H2O, respectively. At room temperature and above only the OH species was observed. Annealing of the surface covered with coadsorbed K/OH indicated the high stability of this OH species which could be detected spectroscopically up to 570 K. The adsorption energy of H2O coadsorbed with K and OH on Pt(111) is increased relative to that of H2O on Pt. The work function due to this adsorbed H2O increases whereas it decreases for H2O on Pt(111). The energy shifts of valence and O1s core levels of H2O on Pt + K as deduced from a comparison of gas phase and adsorbate spectra are 2.8–4.2 eV compared to ≈ 1.3–2.3 eV for H2O on Pt (111). This increased relaxation energy shift suggests a charge transfer screening process for H2O on Pt + K possibly involving the unoccupied 4a1 orbital of H2O. The occurrence of this mode of screening would be consistent with the higher adsorption energy of H2O on Pt + K and with its high propensity to dissociate into OH and H.  相似文献   

4.
Angle resolved photoemission spectra of Pt(111) were measured along the direction of the surface Brillouin zone (SBZ). The electronic structure of a semi-infinite Pt(111) crystal was calculated applying the LMTO-TB approximation to aid interpretation of the spectra. The experimental spectra are well described by the calculated bulk band structure. Both the experiment and calculation reveal a surface state near the Fermi level in the neighborhood of the point of the SBZ.  相似文献   

5.
Y. Zhu  L.D. Schmidt 《Surface science》1983,129(1):107-122
Temperature programmed desorption (TPD) of CO is used to determine surface areas, binding states, and changes upon oxidation for 10–1000 Å particles of Pt, Rh, and Pt-Rh alloy on amorphous SiO2. A low area sample configuration is used to obtain rapid and uniform heating and cooling in an ultra-high vacuum system. It is shown that both metals exhibit a higher CO binding state for small particles, but, as particle size increases, this state disappears and is replaced by a more weakly bound state. These states are suggested to be associated with (111) and higher surface free energy planes on these surfaces, heating Rh above 700 K in O2 at 10?6 Torr produces an oxide on which the CO saturation coverage is at least a factor of 10 lower than on the reduced surface. For Pt, oxidation produces only a small decrease in CO coverage, although the binding energy of CO increases on the oxygen treated surface. The difference in desorption temperatures for CO on Pt and Rh is consistent with previous experiments which show that an oxidation-reduction cycle produces a surface layer which is enriched in Rh and that the oxidized alloy contains no Pt atoms.  相似文献   

6.
K.E. Lu  R.R. Rye 《Surface science》1974,45(2):677-695
The adsorption and flash desorption of hydrogen and the equilibration of H2 and D2 has been studied on the (110), (211), (111) and (100) planes of platinum. Desorption from Pt (211), a stepped surface composed of (111) and (100) ledges, yields a desorption spectrum which apparently is a composite of desorption from the individual ledges. Pt (110) is quite similar to the tungsten structural analog, W (211), in that both yield two-peak desorption spectra, and on both planes adsorption kinetics are dramatically different for filling of the two states. On all four planes adsorption kinetics are apparently proportional to (1 ? θ)2, and estimates of the initial sticking probabilities show them to decrease in the order: (110) > (211) > (100) > (111). Equilibration activity follows approximately the same order [(110) > (211) > (111) > (100)] with a factor of ~ 5 difference between the most and least active planes; no extraordinary activity is observed for the stepped surface, Pt(211). Below ~ 570 K equilibration of H2 and D2 is activated by less than 2 kcal/mole with the magnitude dependent on the specific face, and above this temperature the reaction is nonactivated. The non-activated case apparently results from absorption followed by statistical mixing on the surface. Calculated rates for HD production per cm2 based on this model are in excellent agreement with the experimental values for Pt(110) and Pt(211), and in somewhat poorer agreement in the case of Pt (111) and Pt (100). This latter is probably due to the greater inaccuracy in the values of the sticking coefficients on these planes.  相似文献   

7.
The H2D2 equilibration on Pt single crystals was investigated under intermediate pressure (100–400 Torr) and temperature (50–250°C), as a function of sulfur coverage. On Pt(110) and Pt(111), adsorbed sulfur modifies the kinetic parameters, activation energy and pre-exponential factor; the latter depends on the temperature on Pt(110) only. The clean Pt(110) face was found to be 5 times more active than the clean Pt(111). On both faces, adsorption of sulfur induces electronic effects on the neighbouring reactional sites. The difference in the behaviour of the two faces and a clear influence of the arrangement of the adsorbed sulfur atoms, deduced from LEED diagrams, tend to prove the structure dependency of the H2D2 reaction. A consistent reaction mechanism could be proposed, involving the dissociative adsorption and surface recombination of hydrogen and deuterium, and the reaction between adsorbed molecules for high sulfur coverages. The value of the sulfur coverage which makes the platinum inactive towards H2D2 is lower for the (111) than for the (110) orientation; this is in correlation with the roughness of the surface; the denser at atomic scale a surface is, the further is the extent of the lateral interactions due to adsorbed sulfur.  相似文献   

8.
Solid solution Sr0.5Ba0.5Nb2O6 films have been synthesized on a (111)Pt/(001)Si substrate by rf deposition in an oxygen atmosphere. The depolarized Raman spectra, the structure, and the dielectric characteristics of the films have been studied over a wide temperature range. It is found that the films were singlephase, had the tetragonal tungsten bronze structure, and had a pronounced axial texture with axis 001 directed perpendicular to the substrate surface. It is shown that the film material undergoes a diffuse phase transition to the state of a relaxor ferroelectric in the temperature range 300–425 K. Possible reasons of the regularities observed are discussed.  相似文献   

9.
The electronic and energetic properties of bimetallic surfaces Pt/Ni(111) and Pt/Co(111) are examined using the FP-LAPW (Full-PotentialLinearized Augmented Plane Wave) method by means of spin-polarized and non-polarized calculations. We present both the results of the shifts in the d-band centers when one metal (Pt) is pseudomorfically deposited on another with smaller lattice constant (Ni, Co) and those corresponding to the surface and adhesion energies. The surface is modeled by a seven layer slab separated in z direction by a vacuum region of six substrate layers. The results obtained for pure Ni, Co and Pt surfaces are presented in order to compare with experimental and theoretical data reported in the literature  相似文献   

10.
We have used density functional theory method to calculate the Pt surface segregation energy in the Pt3Ni (111) surface doped with a third transition metal M and thus investigated the influence of component M on the extent of Pt segregation to the outermost layer of these Pt3Ni/M (111) surface. As a third component in the Pt3Ni/M (111) surface, V, Fe, Co, Mo, Tc, Ru, W, Re, Os, and Ir were predicted to lead to even more negative Pt surface segregation energies than that in the based Pt3Ni (111) surface; Ti, Cr, Mn, Cu, Zr, Nb, Rh, Hf, and Ta would still retain the preference of Pt segregation to the surface but with less extent than the replaced Ni, while Pd, Ag, and Au would completely suppress the Pt segregation to the Pt3Ni/M (111) surfaces. Furthermore, we examined the relation between the Pt surface segregation energy in the Pt3Ni/M (111) surfaces and the material properties (lattice parameter, heat of solution, and Pt surface segregation energy) of binary alloys Pt3M. It was found that the surface energy effect, strain effect, and heat of solution effect induced by the doped element M would collectively affect the Pt surface segregation energy in the Pt3Ni/M (111) surfaces.  相似文献   

11.
The adsorption of potassium and the coadsorption of potassium and oxygen on the Pt(111) and stepped Pt(755) crystal surfaces were studied by AES, LEED, and TDS. Pure potassium adlayers were found by LEED to be hexagonally ordered on Pt(111) at coverages of θ = K0.9–;1. The monolayer coverage was 5.4 × 1014K atoms/cm2 (0.36 times the atomic density of the Pt(111) surface). Orientational reordering of the adlayers, similar to the behavior of noble gas phase transitions on metals, was observed. The heat of desorption of K decreased, due to depolarization effects, from 60 kcal/mole at θK <0.1, to 25 kcal/mole at θK = 1 on both Pt(111) and Pt(755). Exposure to oxygen thermally stabilizes a potassium monolayer, increasing the heat of desorption from 25 to 50 kcal/mole. Both potassium and oxygen were found to desorb simultaneously indicating strong interactions in the adsorbed overlayer. LEED results on Pt(111) further indicate that a planar K2O layer may be formed by annealing coadsorbed potassium and oxygen to 750 K.  相似文献   

12.
Incorporation of the nitrogen-containing impurities in hydroxyapatite (HAp) powders with the sizes of the crystallites of (20–50) nm was studied using first-principles modeling combined with the multi-frequency (9 and 94 GHz) electron paramagnetic resonance (EPR) methods. It is shown that the observed EPR spectra are undoubtedly due to the presence of the bulk radiation-induced NO3 2? radicals. This conclusion is based on spin-polarized density functional theory calculations of spectroscopic parameters within gauge-including projector augmented wave framework followed by the exact comparison of the simulated EPR and electron–nuclear double resonance spectra with the experimental findings. In addition, a comprehensive analysis of the simulated properties allows us to suggest that the paramagnetic centers preferably occupy PO4 3? sites in the HAp structure.  相似文献   

13.
The thermal and electro impact behaviour of NO adsorbed on Pt(111) and Pt(110) have been studied by LEED, Auger spectroscopy, and thermal desorption. NO was found to adsorb non-dissociatively and with very similar low coverage adsorption enthalpies on the two surfaces at 300 K. In both cases, heating the adlayer resulted in partial dissociation and led to the appearance of N2 and O2 in the desorption spectra. The (111) surface was found to be significantly more active in inducing the thermal dissociation of NO, and on this surface the molecule was also rapidly desorbed and dissociated under electron impact. Cross sections for these processes were obtained, together with the desorption cross section for atomically bound N formed by dissociation of adsorbed NO. Electron impact effects were found to be much less important on the (110) surface. The results are considered in relation to those already obtained by Ertl et al. for NO adsorption on Ni(111) and Pd(111), and in particular, the unusual desorption kinetics of N2 production are considered explicitly. Where appropriate, comparisons are made with the behaviour of CO on Pt(111) and Pt(110), and the adsorption kinetics of NO on the (110) surface have been examined.  相似文献   

14.
We present the results of the temperature dependence of the Raman spectra of hexagonal HoMnO3 thin films in the 13–300 K temperature range. The films were grown on Pt(111)//Al2O3 (0001) substrates using the laser ablation method. In the HoMnO3 thin films, we initially observedseveral broad Raman peaks at ∼510, 760, 955, 1120, and 1410 cm−1. These broad Raman peaks display an anomalous behavior near the magnetic transition temperature, and the intensity difference of the Raman spectra at different temperatures shows several pairs of negative and positive peaks as the temperature is lowered below the Néel temperature. Our analyses indicate that all the broad peaks are correlated with magnetic ordering, and we have assigned the origin of all the broad peaks. Purely on the basis of the Raman analysis, we have deduced the Néel temperature and the spin exchange integrals of HoMnO3 thin films. We also investigated the effects of the growth condition on the strongest broad peak at ∼760 cm−1, which is related with pure magnetic ordering. This result indicates that the oxygen defect in the HoMnO3 sample has negligible effect on magnetic ordering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Acetonitrile (CH3CN) coordination to a Pt(111) surface has been studied with electron energy loss vibrational spectroscopy (EELS), XPS, thermal desorption and work function measurements. We compare data for the surface states with known acetonitrile coordination complexes. For CH3CN adsorbed on Pt(111) at 100 K, the molecule is rehybridized and adsorbs with the CN bond parallel or slightly inclined to the surface plane in an η2(C, N) configuration. The ν(CN) frequency is 1615 cm?1 and the C ls and N ls binding energies are 284.6 eV and 397.2 eV respectively. By contrast, weakly adsorbed multilayer acetonitrile exhibits a ν(CN) vibrational frequency of 2270 cm?1, and C ls and N ls binding energies of 286.9 eV and 400.1 eV respectively. Both the EELS and XPS results are consistent with rehybridization of the CN triple bond to a double bond with both C and N atoms of the CN group attached to the surface. In addition to this majority η2(C, N) monolayer state, evidence is found for a second, more strongly bound minority molecular state in thermal desorption spectra. As a result of the low coverage of this state, EELS was unable to spectroscopically identify it and we tentatively assign it as an η4(C, N) species associated with accidental step sites. By contrast to the surface complexes, almost all of the known platinum-nitrile coordination complexes are end-bonded via the N lone-pair orbital. Several cases of side-on bonding are known, however, and we compare the results with the known complex Fe32-NCCH3)(CO)9. The difference in the coordinative properties of a Pt(111) surface versus a single Pt atom must be due to the increased ability of multi-atom arrays to back-donate electrons into the π1 system of acetonitrile. Previously published EELS and XPS results for monolayer acetonitrile on Ni(111) and polycrystalline films are almost identical to the present results on Pt(111). We believe that the monolayer of CH3CNNi(111) is also an η2(C, N) species, not an end-bonded species previously proposed by Friend, Muetterties and Gland.  相似文献   

16.
The chemisorption of C2H4 and C2D4 on Pd(111) at 150 K has been studied by high resolution electron energy loss spectroscopy. Analysis of the vibrational spectra indicates that (i) C2H4 is more weakly bound on Pd(111) than on Ni(111) and Pt(111) and (ii) softened and broadened CH stretching frequencies suggest hydrogen bond-like interactions between the molecule and the metal surface.  相似文献   

17.
CO adsorption on the (111) face of a Pt10Ni90 alloy single crystal has been investigated at room temperature by vibrational electron energy loss spectroscopy (EELS) and photoelectron spectroscopy (XPS and UPS). Two well separated CO stretching modes develop at 2070 and 1820 ± 10 cm?1, with their intensities reaching 64 and 36% respectively of the total intensity at saturation coverage. They are attributed to CO adspecies in terminal and bridge bonded configuration respectively. The UPS spectra of 4σ, 5σ and 1π molecular orbitais of adsorbed CO show complex features which may be resolved into two components having the main characteristics of CO adsorbed on pure Pt(111) and Ni(111) respectively. Such behaviour is also observed by XPS on C 1s on O 1s peaks. Their respective contributions, in both XPS and UPS spectra are about 64 and 36% of the whole spectrum. Finally compared to Ni(111) — on which CO adsorbs mainly in bridge configuration — the alloying with 10% Pt has generated the appearance of a large number of new sites for CO chemisorption associated with the presence of Pt atoms at the surface. The large amount of terminal CO adspecies is interpreted in terms of considerable surface enrichment of the alloy in platinum.  相似文献   

18.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate.  相似文献   

19.
《Surface science》1994,303(3):L385-L391
The oxygen-exchange reaction between N16O and 18O2 coadsorbed on Pt(111) has been studied by temperature-programmed desorption (TPD). Reaction products of N18O and 18O16O are desorbed from Pt(111) initially saturated with 18O2 at 94 K followed by exposure of N16O. Three distinct desorption peaks are observed in N18O TPD spectra at 145, 310, and 340 K, and two peaks in 18O16O at 155 K and between 600 and 1000 K. In contrast, the exchange reaction is greatly suppressed when oxygen molecules are replaced with oxygen adatoms at three-fold hollow sites of Pt(111). These results strongly suggest that adsorbed oxygen molecules are responsible for the exchange reaction. NO2 or NO3 is postulated as a reaction intermediate. However, since desorption signals corresponding to these species are not detected, the oxygen-exchanged products are not due to the cracking processes of the higher order nitrogen oxides in the mass spectrometer. Thus, the reaction proceeds via the intermediate that is dissociated during the elevation of surface temperature.  相似文献   

20.
Reported are studies by LEED and Auger spectroscopy of silver layers electrodeposited on well-characterized Pt(111) surfaces from aqueous solution. Prior to electrodeposition. the Pt(111) surface was treated with I2 vapor to form the Pt(111) (7 × 7)R19.1°-I superlattice which protected the Pt and Ag surfaces from attack by the electrolyte and residual gases. Electrodeposition of silver occurred in four distinct ranges of electrode potential. Ordered layers having (3 × 3) and (18 × 18) (coincidence lattice) LEED patterns were formed at all coverages from the onset of deposition to the highest coverages studied, about twenty equivalent atomic layers. Formation of ordered Ag layers has therefore been demonstrated, at least for deposits of limited thickness. Auger spectra revealed that for deposits of a few atomic layers. The iodine layer remained attached to the surface during multiple cycles of electrodeposition and dissolution of silver from iodine-free solution. Each peak of the voltammetric current-potential scan produced a change in the LEED pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号