首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Dislocations in shock loaded tantalum single crystals were imaged using both transmission electron microscope (TEM) and electron channelling contrast image (ECCI) in a scanning electron microscope with a conventional backscattered electron detector. The results were compared with backscattered electron intensity profiles across dislocations calculated via the dynamic theory of electron diffraction. A one-to-one correspondence between ECCI and TEM is established. High voltage and low index reflections should be used to obtain the highest dislocation contrast and greatest imaging depth.  相似文献   

2.
We report a transmission electron microscope study of the morphology and interfacial structure of Aluminium grown on (001) GaAs by chemical beam epitaxy (CBE). The Al grows in islands for all thicknesses deposited, and exhibits four distinct orientation relationships with respect to the substrate. One of these orientation relationships becomes dominant as growth progresses, with (011)Al parallel to (001)GaAs. Misfit dislocations can be seen in the interface between this orientation and the substrate with Burgers vector 1/4(110)GaAs, and a crystallographic analysis shows that these dislocations are associated with interfacial steps of height 1/2[001]GaAs. In (001)Al on (001)GaAs, the existence of these dislocations has in the past been regarded as evidence for the existence of a rigid-body shift of the Al in the interfacial plane. Using cross-sectional high-resolution TEM, it is shown that this shift is not present in the (011) orientation. The similarity in the microstructure and crystallography of the (001) and (011) orientations leads us to suggest that there is also no shift in (001) Al on (001)GaAs. This is in conflict with previous investigations of this system using a wide variety of techniques.  相似文献   

3.
A grain boundary layer of ca. 0.5 nm in thickness is present in B+C added SiC and SiC without any sintering aids. Since these materials do not show a significant strength-decrease at high temperatures, Ikuhara et al. presumed that the layer is not a second phase of sintering aids or impurities but a reconstructed structure formed to reduce the high energy of the grain boundary, and they called such a boundary an extended boundary. The concept of the extended boundary, however, has not yet been generally accepted for lack of convincing evidence. In the present work, the elements analysis of the boundary layer was made and some additional collateral verifications were conducted in order to inspect the extended boundary concept.  相似文献   

4.
Polycrystalline aggregates of cementite (Fe3C) and (Fe,Ni)3C have been synthesised at 10 GPa and 1250 °C in the multianvil apparatus. Further, deformation of the carbides by stress relaxation has been carried out at temperature of 1250 °C and for 8 h at the same pressure. Dislocations have been characterised by transmission electron microscopy. They are of the [1?0?0] and [0?0?1] type, [1?0?0] being the most frequent. [1?0?0] dislocations are dissociated and glide in the (0?1?0) plane. [0?0?1] dislocations glide in (1?0?0) and (0?1?0). Given the plastic anisotropy of cementite, the morphology of the lamellae in pearlitic steels appears to have a major role in the strengthening role played by this phase, since activation of easy slip systems is geometrically inhibited in most cases.  相似文献   

5.
Scanning tunneling microscopy (STM) and high resolution cross-sectional transmission electron microscopy (XTEM) studies have been used to investigate the formation of Ge nanocrystals grown on Si(1 0 0)-(2 × 1) surfaces by molecular beam epitaxy (MBE). We observe relatively high density of Ge islands where small ‘pyramids’, small ‘domes’ and facetted ‘domes’ of various sizes co-exist in the film. As revealed from XTEM images, a large fraction of islands, especially dome-shaped Ge islands have been found to have an aspect ratio of ∼1 (diameter):1 (height). Observation of truncated-sphere-shaped Ge islands with a narrow neck contact with the wetting layer is reported.  相似文献   

6.
With modified analytical embedded atom method (MAEAM), the energy of (0 1 1) twist grain boundary (GB) has been calculated for three noble metals Cu, Ag and Au. The results show that the unrelaxed energy keeps almost constant with twist angle θ except several cusps at low Σ boundaries. The GB energies drop significantly after expansion perpendicular to the boundary. In-boundary translation results in a periodic energy variation and the rectangular period is 1/Σ of their own CSL smallest unit cell. Three specific positions, the corners or centre of the periodic rectangle, or the midpoints of the sides, are preferable in GB translation.  相似文献   

7.
We have studied the dislocation structures that occur in films of Ag, Au, and Ag0.5Au0.5 alloy on a Ru(0 0 0 1) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as “trigons.” In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moiré structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.  相似文献   

8.
Direct wafer bonding between high-density-plasma chemical vapour deposited (HDP-CVD) oxide and thermal oxide (TO) has been investigated. HDP-CVD oxides, about 230 nm in thickness, were deposited on Si(0 0 1) control wafers and the wafers of interest that contain a thin strained silicon (sSi) layer on a so-called virtual substrate that is composed of relaxed SiGe (∼4 μm thick) on Si(0 0 1) wafers. The surfaces of the as-deposited HDP-CVD oxides on the Si control wafers were smooth with a root-mean-square (RMS) roughness of <1 nm, which is sufficiently smooth for direct wafer bonding. The surfaces of the sSi/SiGe/Si(0 0 1) substrates show an RMS roughness of >2 nm. After HDP-CVD oxide deposition on the sSi/SiGe/Si substrates, the RMS roughness of the oxide surfaces was also found to be the same, i.e., >2 nm. To use these wafers for direct bonding the RMS roughness had to be reduced below 1 nm, which was carried out using a chemo-mechanical polishing (CMP) step. After bonding the HDP-CVD oxides to thermally oxidized handle wafers, the bonded interfaces were mostly bubble- and void-free for the silicon control and the sSi/SiGe/Si(0 0 1) wafers. The bonded wafer pairs were then annealed at higher temperatures up to 800 °C and the bonded interfaces were still found to be almost bubble- and void-free. Thus, HDP-CVD oxide is quite suitable for direct wafer bonding and layer transfer of ultrathin sSi layers on oxidized Si wafers for the fabrication of novel sSOI substrates.  相似文献   

9.
A method using a focused ion beam (FIB) to prepare a silicon amorphous material is presented. The method involves the redeposition of sputtered material generated during the interaction of the Ga+ ion beam with a silicon substrate material. The shape and dimensions of this amorphous material are self-organized and reproducible. The stability of this amorphous material under electron irradiation was investigated in the transmission electron microscopy (TEM). Electron irradiation can induce recrystallization of the amorphous material, resulting in the lateral and vertical growth, starting at an amorphous-crystalline interface, of polysilicon containing defects.  相似文献   

10.
B. Ranguelov  P. Müller 《Surface science》2006,600(21):4848-4854
Using recently proposed improvements of reflection electron microsopy (REM) we study, in perfectly controlled thermodynamics conditions, spiral and spirals shapes on Si(1 1 1) surface. It is shown that the new method named low distortion reflection electron microscopy (LODREM) is a powerful instrument, resolving in much more details (compared with REM) growth or evaporation spirals at the crystal surface. More precisely, we examine the distance between two successive steps of a spiral at growth (or evaporation) with respect to the supersaturation (or undersaturation). It is found that this distance scales with an exponent close to −1/2. This result, which deviates from the BCF theory, originates from a non-local behavior with a slow kinetic of attachment of the adatoms at the steps.  相似文献   

11.
We have used the Bi(0 0 0 1)/Si(1 1 1) template to grow highly ordered C60 epitaxial thin films and analyzed them using scanning tunneling microscopy and low-energy electron microscopy. The in situ low-energy electron microscope investigations show that the initial nucleation of the C60 islands on the surface takes place at surface defects, such as domain boundaries and multiple steps. The in-plane lattice parameters of this C60 film turns out to be the same as that of the bulk fcc(1 1 1) C60. The line-on-line epitaxial structure is realized in spite of a weak interaction between the C60 molecules and Bi(0 0 0 1) surface, while scanning tunneling spectroscopy indicates that there is a negligible charge transfer between the molecules and the surface.  相似文献   

12.
The energies of Ag (0 0 1) and (1 1 0) twist grain boundary (GB) in translation have been calculated with the modified analytical embedded atom method (MAEAM). The energy period corresponds exactly to the DSC lattice unit cell and the area of the energy period referred to the CSL unit cell is 1/Σ2. The ‘energy grooves’ are parallel to the sides of the CSL or DSC lattice unit cell. The most preferable sliding direction is parallel to identical sides of the square CSL unit cell for (0 0 1) boundaries and to the short side of the rectangular CSL unit cell for (1 1 0) boundaries. From energy minimization, the stable configuration appears when two adjacent grains are translated relatively to the corners, centre or sides’ midpoint of the DSC lattice unit cell.  相似文献   

13.
R. Zdyb  A. Pavlovska  E. Bauer 《Surface science》2006,600(8):1586-1591
The magnetic domain structure of Fe wires, ribbons and islands with different shapes that have been prepared under ultra high vacuum conditions on W(1 1 0) are studied with spin polarized low energy electron microscopy. The dimensions of the nanostructures, which are of the order of tens and hundreds of nm, can be controlled by the temperature at which they are produced, by the average Fe coverage and by the substrate morphology. The domain structure of the nanostructures depends on their shape and is determined by the competition between magnetoelastic, shape and magnetocrystalline anisotropies.  相似文献   

14.
Salem Neily 《哲学杂志》2020,100(16):2091-2105
ABSTRACT

The transfer of plastic sliding through a crystalline interface involves at least a dislocation having a branch in each crystal. The elastic field associated with this elemental configuration has been processed in the past by Belov et al. (1983 A.Y.Belov, A.Chamrov, V.L.Indenbom and J.Lothe , Elastic fields of dislocations piercing the interface of an anisotropic bicrystal , Phys. Stat. Sol. (B) 119 (1983), pp. 565578. Available at https://doi.org/10.1002/pssb.2221190216 .[Crossref] [Google Scholar], 1992) but has never been verified or used, to the author’s knowledge. With typographical corrections and various verifications, the results obtained in this work confirm the validity of the theory for isotropic and/or anisotropic crystals. A general explicit solution to the elastic field is derived in the case of two different isotropic crystals. The theory fails when one branch is along the interface while the other lies in a crystal (hybrid dislocation). On the other hand, if a branch is very little inclined relative to the interface (quasi-hybrid dislocation), the theory applies fully. In this context, the combination of two quasi-hybrid dislocations solves in practice the problem of the triple node anchored to the interface.  相似文献   

15.
The ultrathin oxidation of a H/Si(1 0 0) surface with microfabricated pn-junctions was studied by photoemission electron microscopy (PEEM), mirror electron microscopy (MEM) and microscopic X-ray photoelectron spectroscopy (μ-XPS). The ultrathin oxidation inverts the contrast of the junctions in PEEM images. It is found by analyzing the intensity profiles of images that the potential distribution across the pn-junctions is also inverted by the oxidation. The charging of the oxide by ultraviolet irradiation from a light source of PEEM is attributed as the cause of the inversion of the contrast shown by μ-XPS and MEM.  相似文献   

16.
Guo-Bao Feng 《中国物理 B》2022,31(10):107901-107901
As a typical two-dimensional (2D) coating material, graphene has been utilized to effectively reduce secondary electron emission from the surface. Nevertheless, the microscopic mechanism and the dominant factor of secondary electron emission suppression remain controversial. Since traditional models rely on the data of experimental bulk properties which are scarcely appropriate to the 2D coating situation, this paper presents the first-principles-based numerical calculations of the electron interaction and emission process for monolayer and multilayer graphene on silicon (111) substrate. By using the anisotropic energy loss for the coating graphene, the electron transport process can be described more realistically. The real physical electron interactions, including the elastic scattering of electron—nucleus, inelastic scattering of the electron—extranuclear electron, and electron—phonon effect, are considered and calculated by using the Monte Carlo method. The energy level transition theory-based first-principles method and the full Penn algorithm are used to calculate the energy loss function during the inelastic scattering. Variations of the energy loss function and interface electron density differences for 1 to 4 layer graphene coating GoSi are calculated, and their inner electron distributions and secondary electron emissions are analyzed. Simulation results demonstrate that the dominant factor of the inhibiting of secondary electron yield (SEY) of GoSi is to induce the deeper electrons in the internal scattering process. In contrast, a low surface potential barrier due to the positive deviation of electron density difference at monolayer GoSi interface in turn weakens the suppression of secondary electron emission of the graphene layer. Only when the graphene layer number is 3, does the contribution of surface work function to the secondary electron emission suppression appear to be slightly positive.  相似文献   

17.
In this paper, we present in situ atomic force microscopy (AFM) observations of the interaction between celestite (SrSO4) (0 0 1) surfaces and Na2CO3 aqueous solutions. The observations indicate that the interaction is characterized by a rapid alteration (carbonatation) and dissolution of the original surface, shortly followed by the formation of a new phase. EDX analyses indicate that the new phase is strontianite (SrCO3). Its crystallization involves the formation and spreading of islands of about 2.75 nm in height, which chiefly occurs on the step edges of the dissolving celestite substrate. The thickness of the islands remains almost constant during their spreading, which occurs mainly parallel to the celestite [0 1 0] direction. As a result of the progressive coalescence of the islands, a fairly homogeneous epitaxial layer forms on the celestite (0 0 1) face. At the initial stages, the formation of islands on the celestite (0 0 1) faces enhances dissolution, indicating the existence of a coupling between dissolution and crystallization reactions. Our measurements on series of AFM images provided quantitative information about coupled dissolution-growth rates on a nanoscale. The effect of the coupled reactions on the celestite (0 0 1) surface on a microscopic scale was also studied by scanning electron microscopy (SEM).  相似文献   

18.
K.L. Man 《Surface science》2007,601(20):4669-4674
Information on the kinetic regime of step motion and step permeability on the Si(1 1 1) (1 × 1) surface has been obtained from observations of island decay that were made with low energy electron microscopy. Island area during decay exhibits the expected power law dependence on time, with exponent, α, that is a qualitative indicator of the kinetic regime. A new method is presented for determining the kinetic length quantitatively from measurements of the decay exponent in the symmetric island decay geometry on top of a larger concentric circular island. Using this approach, we determine the kinetic length on the Si(1 1 1) (1 × 1) surface at 1163 K to be d ∼ 75a, where a is the lattice constant. It is shown that this result locates step motion firmly in the diffusion limited regime. Mass conservation of decaying island stacks is also observed at this temperature, which indicates that steps are effectively impermeable in the context of diffusion limited step kinetics.  相似文献   

19.
The relaxed energy and structure of (0 0 1) twist grain boundary (GB) in noble metals Au, Ag and Cu are simulated by the MAEAM. In-boundary translation between two adjacent grains results in a periodic energy variation and the period is a square with the side length LΣ/Σ. The lowest energy appears when the two grains are translated relatively to either corner or center of the periodic square. The relaxed GB energy increases smoothly for low-angle boundaries and levels off for larger-angle boundaries except a cusp appeared at θ = 36.87° (Σ = 5). After relaxation, the symmetry of the GB structure is not changed but the displacement of the atoms parallel to the GB plane decreases with increasing the distance of the atoms from the GB plane.  相似文献   

20.
We used spectroscopic photoemission and low-energy electron microscopy to measure two-dimensional (2D) emission patterns of secondary electrons (SEs) emitted from graphene layers formed on SiC(0 0 0 1). The 2D SE patterns measured at the SE energies of 0-50 eV show energy-dependent intensity distributions in the 6-fold symmetry. The SE patterns exhibit features ascribed to energy band structures of 2D free electrons, which would prove that electrons are partially confined in thin graphene layers even above the vacuum level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号