首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gerolf Ziegenhain 《哲学杂志》2013,93(26):2225-2238
We investigate the dependence of the hardness of materials on their elastic stiffness. This is possible by constructing a series of model potentials of Morse type; starting with modelling natural Cu, the model potentials exhibit an increased elastic modulus, while keeping all other potential parameters (lattice constant, bond energy) unchanged. Using molecular-dynamics simulation, we perform nanoindentation experiments on these model crystals. We find that the crystal hardness scales with the elastic stiffness. Also the load drop, which is experienced when plasticity sets in, increases in proportion to the elastic stiffness, while the yield point, i.e. the indentation at which plasticity sets in, is independent of the elastic stiffness.  相似文献   

2.
M.F. Wong 《哲学杂志》2013,93(26):3105-3128
The deformation behavior of [001]T- and [011]T-cut single crystal solid solution of Pb(Zn1/3Nb2/3)O3–6% PbTiO3 (PZN–6%PT) in both unpoled and poled states has been investigated by nanoindentation. Nanoindentation experiments reveal that material pile-up and local damage around the indentation impressions are observed at ultra-low loads. These pile-ups and local damage cause a pop-in event (i.e. a sudden increase in displacement at an approximately constant load) in the nanoindentation load–displacement curve (Ph curve). Detailed studies of the relationships between indentation load (P), displacement (h) and harmonic contact stiffness (S) suggest that there is a surface layer, possibly due to crystal fabrication processes, which possesses different mechanical properties from the interior. The thickness of this surface layer is estimated to be approximately 300 nm. Furthermore, it is found that [011]T-cut crystal is stiffer than [001]T-cut crystal. On the other hand, both [001]T- and [011]T-cut crystals in unpoled state possess lower contact stiffness than poled crystals. This finding suggests that poling improved the mechanical property of the crystal. In summary, poled [001]T-cut crystals have an elastic modulus of (107 ± 6) GPa and a hardness of (5.1 ± 0.4) GPa. In contrast, the modulus for [011]T-cut crystals is not constant but increases with indentation depth.  相似文献   

3.
刘洁  蒋毅坚 《光散射学报》2012,24(4):361-366
通过结合纳米压痕和偏振拉曼散射技术对压应力影响下ZnO单晶晶格出现的变化进行了研究。位错的滑移是导致ZnO单晶中出现多处塑性变形的原因而非相变。之后采用偏振拉曼Mapping成像技术以E2(high)模为对象, 监视其在整个压痕区内的强度变化分布。在压痕区中心累积的应力通过位错的滑移而释放, 同时导致压痕区中心处的晶格畸变程度最为严重。伴随着晶格失配的加剧, 拉曼选择定则放宽, 在Z(XX)配置下较弱的LO得到增强, 原本非拉曼活性的B1(high)模出现。此外, 在Z(XY)偏振下压痕区左侧的拉曼光谱中观察到位于130 cm-1处的拉曼异常振动模。此峰的出现可能与压痕区左侧由刃位错所形成的应力场吸引间隙离子导致的晶格畸变有关。  相似文献   

4.
采用分子动力学模拟计算方法,考察具有较高层错能的Al纳米线沿不同晶向的力学行为和变形机制。在相同计算条件下与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线进行比较。结果表明:在力学行为方面,Al纳米线的弹性模量呈现明显的结构各向异性,满足E[111] > E[110] > E[100]的关系,这一关系在FCC金属纳米线中普遍成立;Al纳米线的屈服应力随晶向呈现σy[100] > σy[111] > σy[110]的关系,这一关系在具有较低层错能的FCC金属纳米线中不具有普遍性,这与体系中位错形成机制密切相关。根据拉伸变形过程微观结构的演变规律,阐明Al纳米线不同晶向的变形机制,并与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线的变形机制进行比较。结果表明,对于尺度较小的高层错能Al纳米线,Schmid因子和广义层错能均难以准确预测其变形机制。  相似文献   

5.
The generalized stacking fault (GSF) energy surfaces in the organic energetic molecular crystal, hexahydro-1,3,5-trinitro-s-triazine (RDX), were studied through atomistic simulations. Using a fully flexible molecular potential in highly damped molecular dynamics simulations, we determined quenched 0?K GSF energy surfaces and structures for a set of planes in the α-polymorph RDX crystal and subsequently compare predictions of slip or cleavage with available experimental observations. To account for the steric contributions and elastic shearing due to the presence of flexible molecules, a modified calculation procedure for the GSF energy surface is proposed that enables the distinction of elastic shear energy from the energy associated with the interfacial displacement discontinuity at the slip plane. Comparisons of the unstable stacking fault energy with the surface energy are used to differentiate cleavage planes from likely slip planes, and the calculations are found to be largely in agreement with available experimental data.  相似文献   

6.
Meng Fei Wong 《哲学杂志》2013,93(13):1685-1700
The elastic–plastic deformation behavior of (001)- and (011)-oriented single crystal solid solutions of Pb(Zn1/3Nb2/3)O3–(6–7)% PbTiO3 (PZN–PT) have been studied using a nanoindentation technique. A procedure is presented here to isolate the elastic, elastic–plastic and plastic contributions to the deformation using the unloading data, and a parameter, referred to as relaxation, is defined to characterize the elastic–plastic deformation during nanoindentations. This relaxation parameter increases with the maximum indentation load due to the higher indentation stress induced, and it also causes less recovery of the material upon indentation unloading compared to predicted pure elastic recovery. For a (001) surface, the relaxation value remains virtually unchanged within the range of the maximum indentation load of 10–50 mN, possibly due to a complete localized depoling of the non-180° domain switching. It is also found that the unpoled surface is more prone to stress-induced depolarization compared to the poled surfaces. Furthermore, by applying the continuous stiffness measurement (CSM) technique, the effects of multiple loading/unloading are studied for both (001)- and (011)-oriented PZN–PTs using the maximum indentation loads of 20 and 50 mN. With more loading/unloading cycles at higher CSM frequencies, stress-induced depolarization becomes prevalent and the contribution of the domain reorientation towards elastic recovery is significantly reduced. As a consequence, the relaxation value is increased, indicating more elastic–plastic deformation. This CSM effect is especially pronounced for poled (011) surfaces.  相似文献   

7.
ABSTRACT

A single-phase fcc high-entropy alloy (HEA) of 20%Cr–40%Fe–20%Mn–20%Ni composition and its strength with yttrium and zirconium oxides version was irradiated with 1.4?MeV Ar ions at room temperature and mid-range doses from 0.1 to 10 displacements per atom (dpa). Transmission electron microscopy (TEM), scanning transmission electron microscopy with energy dispersive X-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterise the radiation defects and microstructural changes. Nanoindentation was used to measure the ion irradiation effect on hardening. In order to understand the irradiation effects in HEAs and to demonstrate their potential advantages, a comparison was performed with hardening behaviour of 316 austenitic stainless steel irradiated under an identical condition. It was shown that hardness increases with irradiation dose for all the materials studied, but this increase is lower in high-entropy alloys than in stainless steel.  相似文献   

8.
         下载免费PDF全文
Yuanyuan Tian 《中国物理 B》2022,31(6):66204-066204
Plastic-deformation behaviors of gradient nanotwinned (GNT) metallic multilayers are investigated in nanoscale via molecular dynamics simulation. The evolution law of deformation behaviors of GNT metallic multilayers with different stacking fault energies (SFEs) during nanoindentation is revealed. The deformation behavior transforms from the dislocation dynamics to the twinning/detwinning in the GNT Ag, Cu, to Al with SFE increasing. In addition, it is found that the GNT Ag and GNT Cu strengthen in the case of a larger twin gradient based on more significant twin boundary (TB) strengthening and dislocation strengthening, while the GNT Al softens due to more TB migration and dislocation nucleation from TB at a larger twin gradient. The softening mechanism is further analyzed theoretically. These results not only provide an atomic insight into the plastic-deformation behaviors of certain GNT metallic multilayers with different SFEs, but also give a guideline to design the GNT metallic multilayers with required mechanical properties.  相似文献   

9.
Nanoindentation,namelydepth-sensingindentation(DSI),involvesforcingarigidindenterwithknowngeometryintothesurfaceofamaterialwhilecontinuouslymonitoringtheloadontheindenter,thedisplacementoftheindenterintothesurface,andthetimeoftheexperiment.Thedepthisthenusedtocalculatetheprojectedareaofcontactforthepurposeofcalculatingthehardnessandelasticmodulus.Infact,variouserrorsareassociatedwiththisprocedure.Oneofthemcomesfromthemeasurementofthepenetrationdepth.Ideally,thepenetrationdepthshouldbecalcula…  相似文献   

10.
文玉华  张杨  朱梓忠 《物理学报》2008,57(3):1834-1839
采用分子静力学结合量子修正Sutten-Chen型多体势研究了Ni单晶体在受单向拉伸和压缩载荷作用下的弹性响应.考虑了三种加载方式,即[001],[011]和[111]单向加载.模拟的结果表明:晶体在[011]单向加载下的弹性变形表现出强烈的非线性效应,然而沿[001]和[111]单向加载时,它的横向变形表现为各向同性.进一步讨论了杨氏模量和泊松比与应变的关系,并和第一性原理计算的结果做了比较.关键词:晶体弹性变形分子静力学  相似文献   

11.
12.
五边形石墨烯是一种完全由碳五元环组成的准二维的亚稳态碳结构,在不同载荷作用下其变形破坏机理仍需进一步研究。本文基于ReaxFF反应力场采用分子动力学方法模拟研究了五边形石墨烯的拉伸、剪切和纳米压痕破坏过程,得到了五边形石墨烯的拉伸和剪切应力-应变曲线以及压入载荷-位移曲线,系统分析了五边形石墨烯的变形破坏机理,并验证了五边形石墨烯在不同载荷作用下是否表现出塑性变形特征的一致性问题。研究结果表明,通过拉伸或纳米压入等不同加载方式均可准确测出五边形石墨烯的本征力学性能参数,其杨氏模量265.4-285.1 N/m,与第一性原理计算结果一致。研究还发现,五边形石墨烯在拉伸、剪切和纳米压痕过程中均会出现不可逆的塑性变形特征,而引起塑性变形的原因是由于不可逆的碳五元环向碳多元环结构的转变。以上研究结果可为基于五边形石墨烯的微/纳米机电系统的实际应用提供重要指导。  相似文献   

13.
    
Nitrogen incorporated diamond‐like carbon (N‐DLC) thin films were grown, at high base pressure of 5 × 10−3 Torr, under varied nitrogen gas pressure (NGP) (variation from 55 to 85 mTorr) and varied negative self‐bias (NSB) (variation from 35 to 190 V), using primary pump (rotary pump) processed radio frequency‐plasma enhanced chemical vapour deposition technique. These films then studied for their structural compositional and nanomechanical properties. Time of flight‐secondary ion mass spectroscopy was used to confirm the presence of nitrogen and to investigate the depth profile of these N‐DLC films, whereas energy dispersive X‐ray analysis measurement was carried to analyze the atomic concentration of constituents of film. Micro‐Raman analysis reveals change in D and G peak positions and ID/IG ratio with the change in NSB as well as NGP. It is worth noting that N‐DLC film grown at NGP and NSB of 55 mTorr and 100 V, respectively, exhibited very high hardness as 40.3 GPa. Hence, due to better nanomechanical properties by simpler, high deposition rate and cost effective process, which yielded very high throughput may leads these N‐DLC films to their wide industrial applications such as hard and protective coating on cutting tools, automobile parts, bio‐implants or wear resistant coating on magnetic hard disk.

  相似文献   


14.
    

We have shown in a recent study that substitution of Ho3+ ions (4f10; magnetic momen μB) in La0.7Ca0.3MnO3 causes significant reduction in electrical resistivity compared with Y3+ (4d0; non-magnetic) ion substitution. This reduction in resistivity was attributed to the reduced spin disorder scattering in La0.7Ca0.3MnO3 samples containing magnetic Ho3+. We have estimated the Mn-spin canting angles in Ho3+ - and Y3+-doped La0.7Ca0.3MnO3 compounds from the resistivity data using the magnetic localization model. We find that the canting angles of the Mn spins in the Ho3+ doped compounds are smaller than those obtained for the Y3+-doped compounds for all compositions and at all applied magnetic fields, showing clearly a reduction in the spin disorder in the former. The difference between the T C values for Ho3+ - and Y3+-doped compounds for all compositions may be attributed to the presence of an internal field due to Ho3+ doping. This internal field may be responsible for the decrease in spin disorder in the Ho3+-doped compounds. The increase in the canting angles with increase in Ho3+ and Y3+ content could be attributed to the decrease in the strength of the ferromagnetic exchange interactions. A strong ferromagnetic coupling (as discussed recently by the present authors and co-workers) of Ho3+ moments with the Mn moments is responsible for the observed behaviour.  相似文献   

15.
纳米压痕技术在材料科学中的应用   总被引:19,自引:0,他引:19  
谢存毅 《物理》2001,30(7):432-435
纳米压痕技术已被广泛地应用在材料科学的各个领域,文章针对这一新技术的基本测量原理及其应用进行了介绍。  相似文献   

16.
    
Nanoindentation was carried out on thin films of hydrogenated amorphous silicon (a-Si:H) prepared by plasma-enhanced chemical vapor deposition. The composite values of elastic (Young's) modulus, E c, and hardness, H c, of the film/substrate system were evaluated from the load–displacement curves using the Oliver–Pharr approach. The film-only parameters were obtained employing the extrapolation of the depth profiles of E c and H c. Scanning probe microscopy was employed to image the nanoindenter impressions and to estimate the effect of film roughness and material pile-up on the testing results. It was established that the elastic modulus of thin a-Si:H films is in the range 117–131 GPa, which is lower than for crystalline silicon. In contrast, the values of hardness are in the range 12.2–12.7 GPa, which is comparable to crystalline silicon and higher than for hydrogen-free amorphous silicon. It is suggested that the plastic deformation of a-Si:H proceeds through plastic flow and it is the presence of hydrogen in the amorphous matrix that leads to a higher hardness.  相似文献   

17.
    
This paper presents a physicochemical model that establishes a connection between the elastic strength of the surface layer (SL) of metal and its surface Gibbs energy. The elastic limit of SL along the low-index face of the metal single crystal under stress during the transition from elastic to plastic deformation was calculated. Calculation shows that the elastic limit of metal SL with fcc and bcc structures is approximately three orders of magnitude higher than the yield strength of these metals in bulk and close to nanohardness of the metals, in particular; for Cu(111) и Al(111), it is 5.3 and 2.8?GPa, respectively. In the light of the proposed model, the effect of lowering the elastic strength of metal SL due to adsorption of surfactant is formulated.  相似文献   

18.
胡兴健  郑百林  胡腾越  杨彪  贺鹏飞  岳珠峰 《物理学报》2014,63(17):176201-176201
利用分子动力学方法分别模拟金刚石压头压入Ni模型和Ni基单晶合金γ/γ′模型的纳米压痕过程,通过计算得到两种模型[001]晶向的弹性模量及硬度.采用中心对称参数分析不同压入深度时两种模型内部位错形核、长大过程以及Ni基单晶合金γ/γ′(001)相界面错配位错对纳米压痕过程的影响.结果显示:压入深度0.641 nm之前,两种模型的压入载荷-压入深度曲线相似,说明此时相界面处的错配位错对纳米压痕过程的影响很小;压入深度0.995 nm时,在错配位错处发生位错形核,晶体在γ相中沿着{111}面滑移,随即导致Ni基单晶合金γ/γ′模型压入载荷的下降,并在压入深度达到1.487 nm之前低于Ni模型相同压入深度时的压入载荷;压入深度从1.307 nm开始,由于相界面错配位错的阻碍作用,Ni基单晶合金γ/γ′模型压入载荷上升速度较快.  相似文献   

19.
应用分子动力学模拟方法研究了黑索金(RDX)在纯高温下的分解机理, 研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子, 然后发生H原子转移反应形成H2O, HONO, HO和NO分子; 通过对RDX热分解反应物和生成物的研究结果表明N2和H2O分子是RDX分解过程中最稳定的生成物, NO2, HNO3, NO, NO3和HONO分子为RDX热分解过程中的中间产物; 在高温4500K, CO, CO2和OH分子出现的频率逐渐提高, 表明这几种分子在高温下更容易形成.  相似文献   

20.
应用分子动力学模拟方法研究了黑索金(RDX)在冲击作用下的分解机理,研究结果表明RDX初始分解机理主要为N-N键的断裂形成NO2分子,然后发生比N-N键断裂更为强烈的C-N键断裂反应形成N2,CO和CO2分子;在恒定温度(如300K)下,冲击速度增大对加快反应影响不大,说明高温热点的形成对起爆的重要性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号