首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In fcc crystals, dislocations are dissociated into partial dislocations and, therefore, restricted to move on {111} glide planes. By junction reactions with dislocations on two intersecting {111} planes, Lomer–Cottrell dislocations along ?110? directions can be formed which are barriers for approaching screw dislocations. Treating the interaction between a dissociated screw dislocation and a LC lock conventionally, using classical continuum theory and assuming the partials to be Volterra dislocations, leads to erroneous conclusions. A realistic result can only be obtained in the framework of the Peierls model, treating the partials as Peierls dislocations and explicitly taking account of the change in atomic misfit energy in the glide plane. At even moderate stresses (at less than 3 × 10?3 µ in Cu), the screw will combine with the LC lock to form a Hirth lock. As a result, the nature of the repulsive force will change drastically.  相似文献   

2.
Markus Lazar 《哲学杂志》2013,93(34):3246-3275
Abstract

Non-singular dislocation continuum theories are studied. A comparison between Peierls–Nabarro dislocations and straight dislocations in strain gradient elasticity is given. The non-singular displacement fields, non-singular stresses, plastic distortions and dislocation core shapes are analysed and compared for the two models. The main conclusion of this study is that due to their characteristic properties, the non-singular displacement fields, non-singular stresses and dislocation core shape of screw and edge dislocations obtained in the framework of strain gradient elasticity are more realistic and physical than the corresponding fields of the Peierls–Nabarro model. Strain gradient elasticity of dislocations is a continuum dislocation theory including a weak non-locality within the dislocation core and predicting the size and shape of the dislocation core. The dislocation core is narrower in the strain gradient elasticity dislocation model than in the Peierls–Nabarro model and more evenly distributed in two dimensions. The present analysis shows that for the modelling of the dislocation core structure the non-singular dislocation fields of strain gradient elasticity are the suitable ones.  相似文献   

3.
Abstract

The pile-up of dislocations between two low-angle tilt boundaries (LATB) in an fcc crystal was simulated using three-dimensional discrete dislocation dynamics. The LATB was constructed using glissile edge dislocations stacked on each other. The dislocations in the pile-up were chosen such that their reactions with the dislocations in the LATB resulted in glissile junctions. Parallel pairs of dislocations were inserted to a maximum allowable value estimated from theoretical expressions. A resolved shear stress was applied and increased in steps so as to move the dislocations in the pile-up towards the boundaries. The shear stress required to break the lead dislocation from the wall was determined for varying spacings between the two boundaries. The shear stress and boundary spacing followed the Hall–Petch type relation. Dislocation pile-ups without a LATB were also simulated. The spacing of the dislocations in the pile-up with LATB was found to be closer (ie higher dislocation density) than that without LATB. It was shown through analytical expressions that LATB exerts an attractive force on the dislocations in the pile-up thereby creating a denser pile-up.  相似文献   

4.
Abstract: Single graphene sheets, a few graphene layers, and bulk graphite, obtained via both micromechanical cleavage of highly oriented pyrolytic graphite and carbon vapor deposition methods, were deposited on a thin glass substrate without the use of any chemical treatment. Micro-Raman spectroscopy, tip-enhanced Raman spectroscopy (TERS), and tip-enhanced Raman spectroscopy mapping (TERM) were used for characterization of the graphene layers. In particular, TERM allows for the investigation of individual graphene sheets with high Raman signal enhancement factors and allows for imaging of local defects with nanometer resolution. Enhancement up to 560% of the graphene Raman band intensity was obtained using TERS. TERM (with resolution better than 100 nm) showed an increase in the number of structural defects (D band) on the edges of both graphene and graphite regions.  相似文献   

5.
High-resolution x-ray diffractometry and electron microscopy are used to study the defect structure and relaxation mechanism of elastic stresses in AlGaN/GaN superlattices grown by the MOCVD method on sapphire covered with a preliminarily deposited GaN and AlGaN buffer layer. Based on an analysis of the half-widths of three-crystal scan modes of x-ray reflections measured in different diffraction geometries, the density of different dislocation families is determined. For all the dislocation families, the density is shown to increase with the Al concentration in the solid-solution layers and depend only weakly on the superlattice period. From the electron-microscopic patterns of planar and cross sections, the types of dislocations and their distribution in depth are determined. It is shown that, in addition to high-density vertical edge and screw dislocations, which nucleate in the buffer layer and propagate through the superlattice layers, there are sloped intergrowing dislocations with a large horizontal projection and bent mixed dislocations with a Burgers vector $\left\langle {11\overline 2 3} \right\rangle $ at the interface between individual superlattice layers. The former dislocations form at the interface between the buffer layer and the superlattice and remove misfit stresses between the buffer and the superlattice as a whole, and the latter dislocations favor partial relaxation of stresses between individual superlattice layers. In samples with a high Al concentration (greater than 0.4) in AlGaN layers, there are cracks surrounded by high-density chaotic horizontal dislocations.  相似文献   

6.
Cameron L. Hall 《哲学杂志》2013,93(29):3879-3890
In 1965, Armstrong and Head explored the problem of a pile-up of screw dislocations against a grain boundary. They used numerical methods to determine the positions of the dislocations in the pile-up and they were able to fit approximate formulae for the locations of the first and last dislocations. These formulae were used to gain insights into the Hall–Petch relationship. More recently, Voskoboinikov et al. used asymptotic techniques to study the equivalent problem of a pile-up of a large number of screw dislocations against a bimetallic interface. In this paper, we extend the work of Voskoboinikov et al. to construct systematic asymptotic expressions for the formulae proposed by Armstrong and Head. The further extension of these techniques to more general pile-ups is also outlined. As a result of this work, we show that a pile-up against a grain boundary can become equivalent to a pile-up against a locked dislocation in the case where the mismatch across the boundary is small.  相似文献   

7.
An elastic interaction model is presented to quantify low temperature plasticity of SrTiO3 via glide of dissociated 〈1 1 0〉{1 1 0} screw dislocations. Because 〈1 1 0〉 dislocations are dissociated, their glide, controlled by the kink-pair mechanism at T < 1050 K, involves the formation of kink-pairs on partial dislocations, either simultaneously or sequentially. Our model yields results in good quantitative agreement with the observed non-monotonic mechanical behaviour of SrTiO3. This agreement allows to explain the experimental results in terms of a (progressive) change in 〈1 1 0〉{1 1 0} glide mechanism, from simultaneous nucleation of two kink-pairs along both partials at low stress, towards nucleation of single kink-pairs on individual partials if resolved shear stress exceeds a critical value of 95 MPa. High resolved shear stress allows thus for the activation of extra nucleation mechanisms on dissociated dislocations impossible to occur under the sole action of thermal activation. We suggest that stress condition in conjunction with core dissociation is key to the origin of non-monotonic plastic behaviour of SrTiO3 at low temperatures.  相似文献   

8.

We report a scanning tunnelling microscopy investigation of the emission of dislocations around nanoindentations in the form of dislocation arrangements previously called hillocks , consisting of two pairs of Shockley partial dislocations, each encompassing a stacking fault. The spatial arrangement and size distribution of hillocks around the nanoindentation traces are studied. We show that standard dislocation theory for an isotropic continuum can be used to describe the stability of the hillocks, their size and spatial distribution and the broadening of the corresponding extended dislocations near the surface. A model is proposed in which hillocks originate from the split into dislocations partials of primary perfect dislocation loops punched into the crystal by the scanning tunnelling microscope tip. This model implies the operation of a novel dislocation mechanism involving long-range transport of matter across the surface.  相似文献   

9.
Highly oriented pyrolytic graphite (HOPG) was scribed by pulsed laser beam to produce square patterns. Patterning of HOPG surface facilitates the detachment of graphene layers during contact printing. Direct HOPG-to-substrate and glue-assisted stamp printing of a few-layers graphene was compared. Printed graphene sheets were visualized by optical and scanning electron microscopy. The number of graphene layers was measured by atomic force microscopy. Glue-assisted stamp printing allows printing relatively large graphene sheets (40×40 μm) onto a silicon wafer. The presented method is easier to implement and is more flexible than the majority of existing ways of placing graphene sheets onto a substrate.  相似文献   

10.
Sagi Sheinkman 《哲学杂志》2016,96(26):2779-2799
The prevention of strength degradation of components is one of the great challenges in solid mechanics. In particular, at high temperatures material may deform even at low stresses, a deformation mode known as deformation creep. One of the microstructural mechanisms that governs deformation creep is dislocation motion due to the absorption or emission of vacancies, which results in motion perpendicular to the glide plane, called dislocation climb. However, the importance of the dislocation network for the deformation creep remains far from being understood. In this study, a climb model that accounts for the dislocation network is developed, by solving the diffusion equation for vacancies in a region with a general dislocation distribution. The definition of the sink strength is extended, to account for the contributions of neighbouring dislocations to the climb rate. The model is then applied to dislocation dipoles and dislocation pile-ups, which are dense dislocation structures and it is found that the sink strength of dislocations in a pile-up is reduced since the vacancy field is distributed between the dislocations. Finally, the importance of the results for modelling deformation creep is discussed.  相似文献   

11.
Atomistic models were used to determine the properties of dislocation core fields and stacking fault fields in Al and Cu using embedded atom method (EAM) potentials. Long-range, linear elastic displacement fields due to nonlinear behaviour within dislocation cores, the core field, for relevant combinations of Shockley partial dislocations for edge, screw, and mixed (60° and 30°) geometries were obtained. Displacement fields of stacking faults were obtained separately and used to partition the core field of dissociated dislocations into core fields of partial dislocations and a stacking fault expansion field. Core field stresses were derived from which the total force, including the Volterra field plus core field, between dislocations for several dislocation configurations was determined. The Volterra field dominates when the distance between dislocations exceeds about 50b but forces due to core fields are important for smaller separation distances and were found to affect the equilibrium angle of edge dislocation dipoles and to contribute to the force between otherwise non-interacting edge and screw dislocations. Interactions among the components of a dissociated dislocation modify the equilibrium separation for Shockley partials suggesting that methods that determine stacking fault energies using measurements of separation distances should include core fields.  相似文献   

12.
In this paper, we study the buckling properties of circular double-layered graphene sheets (DLGSs), using plate theory. The two graphene layers are modeled as two individual sheets whose interactions are determined by the Lennard-Jones potential of the carbon-carbon bond. An analytical solution of coupled governing equations is proposed for predicting the buckling properties of circular DLGSs. Using the present theoretical approach, the influences of boundary conditions, plate sizes, and buckling-mode shapes on the buckling behaviors are investigated in detail. The buckling stability is significantly affected by the buckling-mode shapes. As a result of van der Waals interactions, the buckling stress of circular DLGSs is much larger for the anti-phase mode than for the in-phase mode.  相似文献   

13.
Full-scale atomistic simulations by the nudged elastic band method are performed to determine the energetics and core structures of dislocations in a Ni lattice using an embedded-atom method potential. We find that for an edge dislocation, the potential yields very weak coupling between the partials which move almost individually. For a screw dislocation, the coupling between the partials is somewhat stronger and the partials move with some dependence. As expected, the results indicate that stacking fault energy has a controlling influence on the coupling behaviour of the partials. The effective Peierls energies and stresses are 1.30?×?10?6?eV/Å and 2.79?×?10?6?μ for the edge dislocation, and 1.62?×?10?4?eV/Å and 2.02?×?10?4?μ for the screw dislocation.  相似文献   

14.
Benoit Gars 《哲学杂志》2013,93(11):1390-1421
The effect of a free surface on the Peierls stress of a perfect dislocation, as well as on one of two dislocation partials under a free surface, has been accounted for by considering the Lubarda–Markenscoff variable-core dislocation model (VCM). The VCM dislocation smears the Burgers vector, while producing on the slip plane the Peierls–Nabarro sinusoidal relation between the stress and the slip discontinuity with a variable width. Here the core radius is allowed to depend on the distance to the free surface and the other partial. The Peierls stress is computed as a configurational force by accounting for all the energies and the image stresses to satisfy the traction-free boundary conditions. The results are applied to aluminum and copper and comparisons are made with atomistic calculations in the literature that show that the partials merge as they approach the free surface.  相似文献   

15.
The purpose of this work is the continuum modelling of transport and pile-up of infinite discrete dislocation walls driven by non-local interaction and external loading. To this end, the underlying model for dislocation wall interaction is based on the non-singular Peierls–Nabarro (PN) model for the dislocation stress field. For simplicity, attention is restricted to walls consisting of single-sign dislocations and to continuous wall distributions on a single glide plane. In this context, the influence of strongly non-local (SNL; long-range) interaction, and its approximation as weakly non-local (WNL; short-range) are studied in the context of interaction- and external-load-driven wall pile-up at a boundary. The pile-up boundary is modelled via a spatially dependent dislocation mobility which decreases to zero at the boundary. The pile-up behaviour predicted by the current SNL-based continuous wall distribution modelling is consistent with that predicted by discrete wall distribution modelling. Both deviate substantially from the pile-up behaviour predicted by WNL-based continuous wall distribution modelling. As such, it is clearly essential to account in continuum models for the intrinsic SNL character of the interaction between same-sign dislocations ‘close’ to the boundary. Gradient-based WNL ‘approximation’ of this interaction is not justified.  相似文献   

16.

The size-dependent mechanical response of a simple model microstructure is investigated using continuum dislocation-based, Cosserat and strain-gradient models of crystal plasticity. The governing equations and closed-form analytical solutions for plastic slip and lattice rotation are directly compared. The microstructure consists of a periodic succession of hard (elastic) and soft (elastoplastic single-crystal) layers, subjected to single glide perpendicular to the layers. In the dislocation-based approach, inhomogeneous plastic deformation and lattice rotation are shown to develop in the soft channels, either because of bowing of dislocations or owing to pile-up formation. The generalized continuum non-local models are found to be able to reproduce the plastic slip and lattice rotation distribution. In particular, a correspondence was found between the generalized-continuum results and line tension effects; the additional or higher- order balance equations introduced in the non-local models turn out to be the counterparts of the equilibrium equation for bowed dislocations. The relevance and possible physical interpretation of additional or higher-order interface conditions responsible for the inhomogeneous distribution of plastic slip and lattice rotations are discussed.  相似文献   

17.
In this study, we calculate the interaction energy of intrinsic point defects vacancies and interstitials) with screw dislocations in body-centered cubic iron. First (we calculate the dipole tensor of a defect in the bulk crystal using molecular statics. Using a formulation based on linear elasticity theory, we calculate the interaction energy of the defect and the dislocation using both isotropic and anisotropic strain fields. Second, we perform atomistic calculations using molecular statics methods to directly calculate the interaction energy. Results from these two methods are compared. We verify that continuum methods alone are unable to correctly predict the interactions of defects and dislocations near the core. Although anisotropic theory agrees qualitatively with atomistics far from the core, it cannot predict which dumbbell orientations are stable and any continuum calculations must be used with caution. Spontaneous absorption by the core of both vacancies and dumbbells is seen. This paper demonstrates and discusses the differences between continuum and atomistic calculations of interaction energy between a dislocation core and a point defect.  相似文献   

18.
4H-SiC中基面位错发光特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
苗瑞霞  张玉明  汤晓燕  张义门 《物理学报》2011,60(3):37808-037808
本文利用阴极荧光(CL)和选择性刻蚀的方法对4H-SiC同质外延材料中基面位错的发光特性进行了研究. 结果表明螺型基面位错(BTSD)和混合型基面位错(BMD)分别具有绿光和蓝绿光特性,其发光峰分别在530 nm附近和480 nm附近. 从测试结果中还发现BMD 的发光位较BTSD有所蓝移,分析认为BTSD位错芯附近原子沿伯格斯 关键词: 4H-SiC 基面位错 发光特性 禁带宽度  相似文献   

19.
M. P. Dewald  W. A. Curtin 《哲学杂志》2013,93(30):4615-4641
The interaction of dislocations with grain boundaries (GBs) determines a number of important aspects of the mechanical performance of materials, including strengthening and fatigue resistance. Here, the coupled atomistic/discrete-dislocation (CADD) multiscale method, which couples a discrete dislocation continuum region to a fully atomistic region, is used to study screw-dislocations interacting with Σ3, Σ11, and Σ9 symmetric tilt boundaries in Al. The low-energy Σ3 and Σ11 boundaries absorb lattice dislocations and generate extrinsic grain boundary dislocations (GBDs). As multiple screw dislocations impinge on the GB, the GBDs form a pile-up along the GB and provide a back stress that requires increasing applied load to push the lattice dislocations into the GB. Dislocation transmission is never observed, even with large GBD pile-ups near the dislocation/GB intersection. Results are compared with experiments and previous, related simulations. The Σ9 grain boundary, composed from a more complex set of structural units, absorbs screw dislocations that remain localized, with no GBD formation. With increasing applied stress, new screw dislocations are then nucleated into the opposite grain from structural units in the GB that are nearby but not at the location where the original dislocation intersected the boundary. The detailed behaviour depends on the precise location of the incident dislocations and the extent of the pile-up. Transmission can occur on both Schmid and non-Schmid planes and can depend on the shear stresses on the GB plane. A continuum yield locus for transmission is formulated. In general, the overall dissociation and/or transmission behaviour is also determined by the Burgers vectors and associated steps of the primitive vectors of the grain boundary, and the criteria for dislocation transmission formulated by Lee et al . [Scripta Metall. 23 799 (1989); Phil. Mag. A 62 131 (1990); Metall. Trans. A 21 2437 (1990)] are extended to account for these factors.  相似文献   

20.
《Physics letters. A》2020,384(31):126790
The molecular dynamics method is used to study the formation of the Al/graphene nanocomposite in the structural grains of different size under the action of internal stresses. The behavior of graphene sheets inside an individual structural grain as well as in the process of two Al grains containing graphene are joined is investigated. The motion of graphene films, starting from the middle of the aluminum matrix, ends with their location at the crystallite boundaries. Graphene moves in the Al matrix along closely packed planes. In this case, graphene sheets acquire curvature. An intergrowth of graphene sheets is also observed. A contact between two Al-C nanocrystallites through a graphene interlayer is created. The self-diffusion coefficients of atoms and the partial potential energies increased with decreasing nanocrystallite size. The angular distribution of the nearest geometric neighbors and the distribution of distances to the nearest neighbors are determined using the construction of Voronoi polyhedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号