首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (~0.1 wt.%) for various titanium alloys e.g. Ti–6Al–4V. The deformation behaviour of such an alloy Ti–6Al–4V–0.1B is investigated in the (α?+?β) phase field and compared against that of the base alloy Ti–6Al–4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of α lamellae in near α and softening via globularization of α lamella in near β phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti–6Al–4V–0.1B alloy. The compression texture of both the alloys carry signature of pure α phase defamation at lower temperature and α→β→α phase transformation near the β transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti–6Al–4V–0.1B alloy at comparatively lower temperature.  相似文献   

2.
Shibayan Roy 《哲学杂志》2013,93(5):447-463
Deformation instabilities, such as shear cracking and grain boundary cavitation, which are observed in the secondary tensile region of Ti–6Al–4V alloy during compressive deformation in the (α?+?β)-phase field, do not form in Ti–6Al–4V–0.1B alloy when processed under the same conditions. This has been attributed to the microstructural modifications, e.g. the absence of grain boundary α and adjacent grain boundary retained β layers and a lower proportion of 90o-misoriented α-colonies that occur with boron addition.  相似文献   

3.
The structure of a 5 (210) boundary in rutile was investigated by high resolution electron microscopy (HREM). The boundary was stepped with an average inclination of about 5° from the symmetrical (210) plane. The steps were associated with 1/5[210] DSC lattice dislocations accommodating a deviation of about 2° from the exact 5 misorientation of 53.1°, and resulting in a misorientation of 51°. The boundary topography, the location of structural units and the local symmetry were determined using pattern recognition techniques. Flat terraces between steps had a periodic 5 (210) structure which exhibited mirror glide symmetry. Image simulations showed best agreement with experimental images for a model structure with a rigid body shift of 0.21 nm parallel, and a 0.10 nm volume contraction normal to the interface. This structure requires a high density of defects or an excess of Ti ions, presumably of lower oxidation state.  相似文献   

4.
Ti–6Al–4V (Ti64) plates were subjected to rolling at 600°C and 800°C, respectively, for reductions up to 90% reduction in thickness. The mechanism of texture and microstructure evolution during rolling was studied in the present study. Extension twins of coherent nature were observed in the samples rolled up to 50% of reduction. The deformation was relatively inhomogeneous in the samples rolled at 600°C compared to that at 800°C. Visco-plastic self-consistent (VPSC) simulation showed that relative activity of pyramidal <c+a> slip was higher during rolling at 800°C compared to that at 600°C. The average activity of slip systems per grain was less than five for the samples rolled at 600°C and this might be responsible for the strain heterogeneity in the large grains. Further, twinning activity was found to be limited to a true strain of 0.5, as supported by the microstructural observation. VPSC simulation also showed the presence of contraction twins in the samples which was further supported by X-ray texture measurement. Dominant basal texture was observed in the samples irrespective of the temperature of rolling.  相似文献   

5.
The microscopic structures and the bonding properties of Y-doped and undoped(0118)/[0441]/180?(Σ37) grain boundaries in alumina are investigated by using ab initio method.The formation energy of grain boundary and the segregation energy of Y to grain boundary are acquired.Electronic structures,potential distributions,bond orders and effective charges of Y-doped and undoped Σ37 GB systems are calculated.Our results reveal that the higher strength Y-O bond than Al-O bond is ascribed to the hybridization of Y(4p,3d) with O(2s).Meanwhile,dopant Y also causes a change in potential distribution in the grain boundary region,thereby further aflecting the transport property of ceramic alumina.  相似文献   

6.
In situ straining in the transmission electron microscope and diffraction-contrast electron tomography have been applied to the investigation of dislocation/grain boundary and dislocation/twin boundary interactions in α-Ti. It was found that, similar to FCC materials, the transfer of dislocations across grain boundaries is governed primarily by the minimization of the magnitude of the Burgers vector of the residual grain boundary dislocation. That is, grain boundary strain energy density minimization determines the selection of the emitted slip system.  相似文献   

7.
Magnetic phase evolution, crystallographic texture, microstructure and magnetic properties of Fe–28Cr–15Co–3.5Mo–1.8Ti alloy have been investigated by X-ray diffractometry, scanning transmission electron microscopy and magnetometry techniques as a function of processing conditions. Heat treatment conditions for obtaining optimum textural, microstructural and magnetic properties have been established by the experimentations. The Goss {110}〈001〉 and cube type {001}〈010〉 textures have been developed in an optimal treated Fe–28Cr–15Co–3.5Mo–1.8Ti magnets. The coercive force in Fe–28Cr–15Co–3.5Mo–1.8Ti magnets depends critically on the shape anisotropy of rod-like Fe Co Ti-rich α1 particles and remanence on the alignment and elongation of α1 particles parallel to applied magnetic field 〈100〉 directions. The optimum magnetic properties obtained in Fe–28Cr–15Co–3.5Mo–1.8Ti alloy are intrinsic coercive force, iHc, of 78.8 kA/m (990 Oe), remanence, Br of 1.12 T (11.2 kG) and energy product, (BH)max of 52.5 kJ/m3 (6.5 MGOe). The development of Fe–28Cr–15Co–3.5Mo–1.8Ti magnets as well as characterization of texture, microstructural and magnetic properties in the current study would be helpful in designing the new Fe–Cr–Co–Mo based magnets suitable for scientific and technological applications.  相似文献   

8.
The hydrogen sorption in intermetallic B2 TiM (M = Ni, Co, Pd) with a symmetric ??5(310) tilt grain boundary and a (310) surface is studied by density functional theory methods. The effect of hydrogen on the electronic characteristics of the alloys is analyzed as a function of a sorption position at the interfaces. The hydrogen sorption energy is shown to depend on the local environment of hydrogen; on the whole, hydrogen at the interfaces prefers titanium-rich positions. The hydrogen sorption energy in metal-rich positions decreases when the d shell of the second alloy component is filled with electrons. The grain-boundary energy, the surface energy, and the hydrogen segregation energies to the interfaces are calculated. Hydrogen sorption in titanium alloys is shown to decrease Griffith work and to favor brittle fracture along tilt grain boundaries.  相似文献   

9.
10.
We investigate the effect of temperature on the structure and shear response of a Σ11 asymmetric tilt grain boundary in a classical embedded-atom model of elemental copper using molecular dynamics simulations. As the temperature is increased the structure of the boundary disorders considerably, but with a boundary width that remains finite at the melting point. The disordering of the boundary structure becomes significant for homologous temperatures above 0.83 (1100?K). As temperature increases above this point the boundary width and roughness increases monotonically. Near the temperature where the boundary starts to disorder we observe a change in the temperature dependence of the ideal shear strength of the boundary, as well as the value of the coupling parameter β, defined as the ratio of the velocity of relative translation of the grains parallel to the boundary plane to that corresponding to the motion of the boundary normal to its plane.  相似文献   

11.
Using density functional theory calculation, we show that oxygen (O) exhibits an interesting effect in CdTe. The Te atoms with dangling bonds in a Te-rich rich Σ3 (112) grain boundary (GB) create deep gap states due to strong interaction between Te atoms. However, when such a Te atom is substituted by an O atom, the deep gap states can be shifted toward the valence band, making the site no longer a harmful non-radiative recombination center. We find that O atoms prefer energetically substituting these Te atoms and induce significant lattice relaxation due to their smaller atomic size and stronger electronegativity, which effectively reduces the anion–anion interaction. Consequently, the deep gap states are shifted to lower energy regions close to or even below the top of the valence band.  相似文献   

12.
Using first-principles density functional theory method, we have investigated the distribution and magnetism of doped Mn atoms in the vicinity of the Σ3 (1 1 2) grain boundary in Ge. We find that at low concentration, the substitutional sites are energetically favorable over the interstitial ones for Mn. The binding energy of Mn varies with lattice sites in the boundary region, and hence a non-uniform distribution of Mn nears the boundary. However, the average of their segregation energy is quite small, thus no remarkable grain boundary segregation of Mn is predicted. Due to volume expansion at the grain boundary, the spin polarization of Mn is slightly enhanced. Overall, we find that the magnetism of Mn-doped Ge is not sensitively dependent on the grain structure.  相似文献   

13.
400 kV high resolution electron microscopy (HREM), deep level transient spectroscopy (DLTS) and steady state electrical measurements have been applied to 37(610) and 29(520) [001] tilt grain boundaries (GBs) in germanium bicrystals. The atomic boundary structures were revealed by experimental HREM images taken under different defocus conditions. Later, structure models were refined by means of a trial-and-error method applying alternatively the image simulation and the molecular static calculation of relaxed structures. The structures were shown to be consistent with the modified structural unit model. Although the structures are different for the two GBs studied, DLTS data and steady state measurements were found to be quite similar for both GBs. Thus, the results point to the extrinsic origin of localized deep states at the GBs. The analysis of DLTS spectra indicates the impurity segregation at the boundary, e.g., the formation of vacancy-type oxygen complexes of a donor-like state at E c-0.21 eV, which results in the fluctuation of the potential barrier. Defects in the GBs—like facets, atomic steps and secondary grain boundary dislocations—which are characteristic of both boundaries can act as nuclei to the impurity segregation.Presented at the Workshop on High-Voltage and High-Resolution Electron Microscopy, February 21–24, 1994, Stuttgart, Germany.  相似文献   

14.
A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.  相似文献   

15.
Ceramic lead niobates and their solid solutions PSN–PLuN (pure lutecium niobate) were synthesized by solid state reactions. The sequence of phases formed at PSN–PLuN synthesis has been studied by X-ray analysis. Their symmetry changed from rhombohedral for PSN to pseudo-monoclinic for the 0.75PSN–0.25PLuN compositions. The performed EDS investigations revealed that the samples PSN–PLuN are perfectly sintered. They contain a little glassy phase and their grains are well shaped. The increase of lutecium content in the examined solid solution caused downward shift of the temperature of the phase transition. The decrease of the achieved permittivity values ? was observed as well.  相似文献   

16.
17.
Grain boundaries (GBs) relaxation is a promising and effective strategy to improving GB stability or stabilizing nanocrystalline metals. However, previous studies mainly focused on nanocrystalline pure metals and GB behaviors therein, without considering the role of foreign atoms such as impurity or alloying atoms in GB relaxation. In this work, the shear-strain induced structural relaxation of pure Cu Σ3 [110](112) symmetric tilt GBs (STGBs), and the effects of foreign elements (Fe and Ni) and temperature on the GB relaxation were investigated in detail by molecular dynamics method. The results show that shear strain can trigger the structural relaxation of pure, Fe- and Ni-containing Cu GBs by the emission of Shockley partial dislocations from Cu GBs. Both Fe and Ni have impediment effects on the shear-strain induced GB relaxation, though the content of Fe or Ni atom (0.00165 at.%) is quite low in the GB model. The temperature cannot trigger GB relaxation independently within the considered temperature range, but play a positive role in the shear-strain induced structural relaxations of pure, Fe- and Ni-containing Cu Σ3 [110](112) STGBs. Our work might gain new insights into the mechanically induced GB relaxation in nanocrystalline copper and could be beneficial for improving the stability of Cu GBs.  相似文献   

18.
19.
Full finite-range macroscopic calculations in the distorted-wave Born approximation have been performed using the molecular and Michel α-nucleus potentials to analyze the angular distributions of cross-sections of the 27Al(α, d)29Si reaction, at 26.5 and 27.2 MeV incident energies, leading to seven transitions up to the excitation energy E X = 4.08 MeV of the final nucleus. The parameters of the two types of the α-nucleus potentials are determined from the elastic-scattering data. Both the molecular and Michel potentials, without any adjustment to the parameters needed to fit the elastic-scattering data, are able in most cases to reproduce, simultaneously, the absolute cross-sections particularly at large angles, where the previous calculations failed to reproduce by orders of magnitude, and the gross pattern of angular distributions of the reaction. The deuteron-cluster spectroscopic factors for most of the seven transitions, deduced using the two α-27Al potentials, differ from those obtained in earlier works. The spectroscopic factor for the ground-state transition, deduced in the present work for the 25.8 MeV data, agrees well with the shell model prediction. Received: 15 July 2002 / Accepted: 8 August 2002 / Published online: 10 December 2002 RID="a" ID="a"e-mail: akbasak2001@Yahoo.com Communicated by G. Orlandini  相似文献   

20.
The evolution of vegetation structure following mine rehabilitation is rather scarce in the literature. The concentration of long-lived radionuclides of the 238U series might have harmful effects on living organisms. We studied soil properties and the natural vegetation occurring along a gradient in Los Ratones, an area rehabilitated after uranium mining located in Cáceres, Spain. Soil and vegetation were sampled seasonally and physical and chemical properties of soil were analysed, including natural isotopes of 238U, 230Th, 226Ra and 210Pb. Species richness, diversity, evenness and plant cover were estimated and correlated in relation to soil physical and chemical variables. The location of the sampling sites along a gradient had a strong explanatory effect on the herbaceous species, as well as the presence of shrubs and trees. Seasonal effects of the four natural isotopes were observed in species richness, species diversity and plant cover; these effects were directly related to the pH values in the soil, this being the soil property that most influences the plant distribution. Vegetation in the studied area resembles that of the surroundings, thus proving that the rehabilitation carried out in Los Ratones mine was successful in terms of understorey cover recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号