首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单晶铜在动态加载下空洞增长的分子动力学研究   总被引:7,自引:0,他引:7       下载免费PDF全文
冲击载荷下延性材料的损伤是材料中微空洞的产生和长大演化的结果.利用分子动力学模拟 方法对延性金属单晶铜中单个空洞在动态加载下的演化发展进行了研究,得到了空洞增长过 程中的应力分布及空洞增长演化随冲击强度变化的规律.模拟结果表明,动态加载下的前期 压缩过程对后期拉伸应力场作用下的空洞增长演化特征有不可忽视的影响,微空洞增长的阈 值则与单晶实验中层裂强度随拉伸应力作用时间减少而增加的趋势相一致. 关键词: 层裂 分子动力学 动态加载 空洞  相似文献   

2.
利用分子动力学方法研究了单晶铜中不同大小的球形空洞在冲击波下的演化过程.模拟结果表明不同大小空洞的塌缩过程不同.模拟中冲击波由空洞左边扫向空洞右边.在较大尺寸的空洞塌缩过程中会产生系列的位错环.当空洞半径较小时,先在空洞的右侧形成位错环,当空洞半径增大到某一临界大小时,在空洞左右两侧同时产生位错环,当空洞半径较大时,先在空洞左侧形成位错环.当空洞左右两侧的位错环均形成以后,其右侧位错环前端的生长速度大于其左侧的.空洞半径增大,相应的位错环前端的生长速度变化不大.当空洞半径增大时,空洞中心指向位错源的矢量方 关键词: 纳米空洞 位错环 冲击波 塑性变形  相似文献   

3.
Ning Wei 《中国物理 B》2022,31(6):66203-066203
The plastic deformation properties of cylindrical pre-void aluminum-magnesium (Al-Mg) alloy under uniaxial tension are explored using molecular dynamics simulations with embedded atom method (EAM) potential. The factors of Mg content, void size, and temperature are considered. The results show that the void fraction decreases with increasing Mg in the plastic deformation, and it is almost independent of Mg content when Mg is beyond 5%. Both Mg contents and stacking faults around the void affect the void growth. These phenomena are explained by the dislocation density of the sample and stacking faults distribution around the void. The variation trends of yield stress caused by void size are in good agreement with the Lubarda model. Moreover, temperature effects are explored, the yield stress and Young's modulus obviously decrease with temperature. Our results may enrich and facilitate the understanding of the plastic mechanism of Al-Mg with defects or other alloys.  相似文献   

4.
本文利用分子动力学模拟的方法研究了不同取向、尺寸和温度因素对单晶体心立方铁纳米线的拉伸变形行为的影响.铁纳米线轴向初始取向分别为<001>、<110>、<111>、<102>、<112>,模拟了不同温度(10~700 K)和不同尺寸范围(1.5~5 nm)下的变形机制.研究结果表明取向、尺寸和温度会显著影响单晶体心立方铁纳米线的拉伸变形行为.分子动力学模拟结果表明,直径为2 nm的<001>铁纳米线在300 K的拉伸载荷下,主要通过孪晶的模式发生变形,最后拉伸取向转变为<110>.而在700 K下,<001>铁纳米线的拉伸变形模式由滑移主导.不同初始取向在不同温度和尺寸下其变形机制截然不同,这导致了铁纳米线不同的力学性能.本文系统性地研究了在不同取向下的铁纳米线变形机制随尺寸和温度变化发生的转变.  相似文献   

5.
基于原子嵌入势(EAM),采用分子动力学方法,对临界尺寸下的Pt_(0.95)Ag_(0.05)合金纳米线多边形结构的熔化行为进行了计算模拟.结果表明:径向尺寸对Pt_(0.95)Ag_(0.05)合金纳米线的熔点影响较为显著,而长度对其影响较小;引入林德曼因子得到的熔点和用势能-温度变化曲线找到的熔点基本一致;合金纳米线的染色原子由外向内运动;综合分析发现Pt_(0.95)Ag_(0.05)合金纳米线以先外后内的模式进行熔化.  相似文献   

6.
基于EAM原子嵌入势,采用分子动力学方法,对临界尺寸下的Pt0.95Ag0.05合金纳米线多边形结构的熔化行为进行了计算模拟.结果表明:径向尺寸对Pt0.95Ag0.05合金纳米线的熔点影响较为显著,而长度对其影响较小;引入林德曼因子得到的熔点和用势能-温度变化曲线找到的熔点基本一致;合金纳米线的染色原子由外向内运动;综合分析发现Pt0.95Ag0.05合金纳米线以先外后内的模式进行熔化.  相似文献   

7.
M.J. Kramer  M. Asta 《哲学杂志》2013,93(17):1876-1892
We report data on the structure of liquid Al and an Al67Mg33 alloy obtained from state-of-the-art X-ray diffraction experiments and ab initio molecular dynamics (AIMD) simulations. To facilitate a direct comparison between these data, we develop a method to elongate the AIMD pair correlation function in order to obtain reliable AIMD structure factors. The comparison reveals an appreciable level of discrepancy between experimental and AIMD liquid structures, with the latter being consistently more ordered than the former at the same temperature. The discrepancy noted in this study is estimated to have significant implications for simulation-based calculations of liquid transport properties and solid–liquid interface kinetic properties.  相似文献   

8.
By molecular dynamics simulations employing an embedded atom model potential,we investigate the fcc-to-bcc phase transition in single crystal Al,caused by uniform compression.Results show that the fcc structure is unstable when the pressure is over 250 GPa,in reasonable agreement with the calculated value through the density functional theory.The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail.The bcc (011) planes are transited from the fcc (11) plane and the (11) plane.We suggest that the transition mechanism consists mainly of compression,shear,slid and rotation of the lattice.In addition,our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure.  相似文献   

9.
Sho Kujirai 《哲学杂志》2020,100(16):2106-2127
ABSTRACT

The mechanical properties of metals used as structural materials are significantly affected by hot (or warm) plastic working. Therefore, it is industrially important to predict the microscopic behaviour of materials in the deformation process during heat treatment. In this process, a number of nuclei are generated in the vicinity of grain boundaries owing to thermal fluctuation or the coalescence of subgrains, and dynamic recrystallisation (DRX) occurs along with the deformation. In this paper, we develop a DRX model by coupling a dislocation-based crystal plasticity model and a multi-phase-field (MPF) model through the dislocation density. Then, the temperature dependence of the hardening tendency in the recrystallisation process is introduced into the DRX model. A multiphysics simulation for pure Ni is conducted, and then the validity of the DRX model is investigated by comparing the numerical results of microstructure formation and the nominal stress–strain curve during DRX with experimental results. The obtained results indicate that in the process of DRX, nucleation and grain growth occur mainly around grain boundaries with high dislocation density. As deformation progresses, new dislocations pile up and subsequent nucleation occurs in the recrystallised grains. The influence of such microstructural evolution appears as oscillation in the stress–strain curve. From the stress–strain curves, the temperature dependence in DRX is observed mainly in terms of the yield stress, the hardening ratio, and the change in the hardening tendency after nucleation occurs.  相似文献   

10.
李莉  邵建立  李艳芳  段素青  梁九卿 《中国物理 B》2012,21(2):26402-026402
By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density functional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111) plane and the (111) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure.  相似文献   

11.
氢在Nd晶体中行为的分子动力学模拟   总被引:2,自引:2,他引:2  
由三维Mobius反演变换所得的金属Nd原子和H原子间的相互作用势和组合规则的方法得到的Nd H原子间的相互作用势 ,利用正则系统分子动力学算法研究了在一定加载应力强度因子K =0 .6MPam下 ,氢在Nd晶体中的行为。模拟结果表明 ,氢在Nd晶体裂尖富集成许多氢原子团或氢气团。这可用来部分地解释NdFeB稀土永磁体吸氢后的氢爆行为。  相似文献   

12.
Homogeneous nucleation and growth from binary metal vapour is investigated by molecular dynamics simulation. It is focused here mainly on the iron-platinum system with a mole fraction of 0.5. The simulations are started in the highly supersaturated vapour phase. Argon is added as carrier gas removing the heat of condensation from the forming clusters. The embedded atom method is employed for modelling of the force field of iron and platinum. The simulation runs are evaluated with respect to the nucleation rate, monomer temperature, monomer amount, and with respect to the size of the largest cluster in the system including possible pure metal clusters. It turns out that depending on the composition of the complete system pure platinum clusters with sizes up to 10 to 15 atoms are formed in addition to binary clusters. Due to the high temperature of these clusters iron atoms less likely condense at the beginning of the particle formation simulation. This leads to temporary difference in the temperatures of the platinum and the iron subsystems, which eventually approach each other when only binary clusters are present. In summary, the results obtained from the cluster statistics show that pure platinum nucleation and growth can take place to some extent within the binary system.  相似文献   

13.
《Current Applied Physics》2018,18(6):744-751
Material deformation caused by the interaction between defects is a significant factor of material fracture failure. The present study employs molecular dynamics simulations of single-void and double-void crystalline Ni atomic systems to investigate inter-void interactions. Furthermore, simulations showing the evolution of dislocations for three different crystallographic orientations are conducted to study the void growth and coalescence. The simulations also consider the effect of the radius of the secondary void on dislocation evolution. The results show that double-void systems are more prone to yield than single-void systems. Further microstructural analysis indicates that the interaction between voids is realized by dislocation reactions. The simulation results of the dislocation evolution of the three orientations reveal that a relationship exists between the evolution of the dislocation density and the stress-strain curve. At the initial stage of dislocation, the dislocation grows slowly, and consists of Shockley partial dislocation. The dislocation growth rate then increases significantly in the sharply declining stage of the stress-strain curve, where most of dislocations are Shockley partial dislocation. Analysis of the dislocation length during the overall simulation indicates that the dislocation length of the [110] orientation is the longest, followed by that of the [111] orientation and the [100] orientation, which has the shortest dislocation length.  相似文献   

14.
Hua Xie 《中国物理 B》2022,31(11):114701-114701
To discover the microscopic mechanism responsible for cavitation nucleation in pure water, nucleation processes in pure water are simulated using the molecular dynamics method. Cavitation nucleation is generated by uniformly stretching the system under isothermal conditions, and the formation and development of cavitation nuclei are simulated and discussed at the molecular level. The processes of energy, pressure, and density are analyzed, and the tensile strength of the pure water and the critical volume of the bubble nuclei are investigated. The results show that critical states exist in the process of cavitation nucleation. In the critical state, the energy, density, and pressure of the system change abruptly, and a stable cavitation nucleus is produced if the energy barrier is broken and the critical volume is exceeded. System pressure and water density are the key factors in the generation of cavitation nuclei. When the critical state is surpassed, the liquid is completely ruptured, and the volume of the cavitation nucleus rapidly increases to larger than 100 nm3; at this point, the surface tension of the bubble dominates the cavitation nucleus, instead of intermolecular forces. The negative critical pressure for bubble nucleation is -198.6 MPa, the corresponding critical volume is 13.84 nm3, and the nucleation rate is 2.42×1032 m-3·-1 in pure water at 300 K. Temperature has a significant effect on nucleation: as the temperature rises, nucleation thresholds decrease, and cavitation nucleation occurs earlier.  相似文献   

15.
ABSTRACT

We consider application to the hard sphere (HS) model of the mapped-averaging framework for generating alternative ensemble averages for thermodynamic properties. Specifically, we develop and examine new formulas for the pressure, the singlet and pair densities, and the cavity-correlation function inside the HS core; the pressure formula in particular is constructed such that it gives an ensemble average that exactly corrects the second-order virial equation of state. The force plays a central role in mapped-averaging expressions, and we write them in a way that accounts for the impulsive, event-driven nature of the HS dynamics. Comparison between results obtained conventionally versus mapped averaging finds that the latter has some advantage at low density, while both perform equally well (in terms of uncertainties for a given amount of sampling) at higher densities.  相似文献   

16.
谢月红  徐建刚  宋海洋  张云光 《中国物理 B》2015,24(2):26201-026201
The effects of a twin boundary(TB) on the mechanical properties of two types of bicrystal Al thin films during the nanoimprint process are investigated by using molecular dynamics simulations.The results indicate that for the TB direction parallel to the imprinting direction,the yield stress reaches the maximum for the initial dislocation nucleation when the mould directly imprints to the TB,and the yield stress first decreases with the increase of the marker interval and then increases.However,for the TB direction perpendicular to the imprinting direction,the effect of the TB location to the imprinting forces is very small,and the yield stress is greater than that with the TB direction parallel to the imprinting direction.The results also demonstrate that the direction of the slip dislocations and the deformation of the thin film caused by spring-back are different due to various positions and directions of the TB.  相似文献   

17.
Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases.  相似文献   

18.
磁盘润滑膜全氟聚醚的分子动力学模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李欣  胡元中  王慧 《物理学报》2005,54(8):3787-3792
纳米润滑膜全氟聚醚(perfluoropolyether,简称PFPE)在固体表面的结构和迁移特性对于计 算机磁盘磁头驱动系统的可靠性具有重要的作用. 采用基于粗粒珠簧模型的分子动力学模拟 方法,考察了不同壁面和端基极性对于PFPE膜静态特性(如分子构型、单体密度分布、端基 密度分布)以及动态特性(如自扩散系数)的影响. 静态特性的模拟结果表明,非极性PFPE 膜在壁面附近具有单层厚度为一个单体直径的层状结构,而极性PFPE膜则具有复杂的层状结 构. 动态特性的模拟结果表明,PFPE膜的扩散能力因壁面作用而增强并因端基极性作用而减 弱. 关键词: 全氟聚醚膜 分子动力学模拟 薄膜润滑 固液界面结构  相似文献   

19.
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces. The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces. The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations. The extended MKT slip model is validated by our MD simulations under various situations, by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid. This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow. Moreover, the slip velocity shear-rate dependence can be predicted using this slip model, since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.  相似文献   

20.
All-atom molecular simulations and temperature-dependent NMR have been used to investigate the conformations and hydrogen bonds of glutathione (GSH) in aqueous solution. The simulations start from three different initial conformations. The properties are characterized by intramolecular distances, radius of gyration, root-mean-square deviation, and solvent-accessible surface. GSH is highly flexible in aqueous solutions in the simulations. Moreover, conformations can covert between “extended” and “folded” states. Interestingly, the two different hydrogen atoms in cysteine (HN2) and glycin (HN3) show different capabilities in forming NH?OW hydrogen bonds. The temperature-dependent NMR results of the different amide hydrogen atoms also show agreements with the MD simulations. Competing formation of GSH hydrogen-bonding interactions in aqueous solutions leads to hydrogen-bonding networks and the distribution of conformations. These changes will affect the activity of GSH under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号