首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A stable decagonal quasicrystal in Al70Pd30?xMnx alloys (x = 10–20) was examined by electron diffraction and high-resolution electron microscopy. The decagonal quasicrystalline grains are formed with definite crystallographic relationships to adjacent icosahedral and Al3Mn crystalline grains. The structure of the decagonal phase, which is formed as the main phase at near Al70Pd10Mn20 composition, is a mixture of decagonal quasicrystalline regions with some linear phason strain and microcrystalline regions. The structures of both regions may be interpreted in terms of quasiperiodic and periodic tilings, constructed with two types of bond lengths, S (about 2 nm) and L (= τ · S, where τ is the Golden ratio), of the same atom cluster with decagonal symmetry.  相似文献   

2.
We present the results of an electron microscopy study of defects in plastically deformed single crystals of the intermetallic ξ-(Al–Pd–Mn) phase. Pure edge dislocations with two different Burgers vector directions and four different Burgers vector magnitudes were found. All Burgers vector magnitudes observed can be described in terms of irrational fractions of the unit-cell parameters, and we have observed Burgers vector directions that can be indexed using irrational indices. The stacking faults observed have displacement vectors whose magnitudes and directions are incompatible with the unit cell of the ξ phase. A comparison of the Burgers vectors observed in this study with those reported for the corresponding icosahedral quasicrystal shows that they are equivalent with respect to their directions and lengths. This leads to the conclusion that local order rather than long-range periodic (or quasiperiodic) order governs the structure of defects in these materials.  相似文献   

3.
Deformation-induced iron and manganese atomic separation in a bcc solid solution is detected via Mössbauer spectroscopy in Fe93.2Mn6.8 alloy after high pressure torsion deformation in Bridgman anvils. The rate of short-range separation grows along with the temperature of deformation.  相似文献   

4.
The study of recrystallization texture of a cold deformed Fe–Mn–Al–Si–C alloy, with about 30% Mn, has been discussed in this paper. The alloy is fully austenitic at room temperature, and therefore, principal FCC rolling textures were developed in this material at different stages of cold rolling. The present study was undertaken to observe the transformation of FCC rolling texture during recrystallization of a heavily cold deformed specimen. It was observed that isothermal annealing at 750 °C led to a weak recrystallisation texture, which was quite similar to the deformation texture developed at the early stage of cold rolling. During recovery stage, a strong Bs/Goss-type texture was developed, which was identified as a new observation in this work.  相似文献   

5.
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe–Mn–O system are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Two spinel phases (cubic and tetragonal) were modeled using Compound Energy Formalism (CEF) with the use of physically meaningful parameters. The present Fe–Mn spinel solutions can be integrated into a larger spinel solution database, which has been already developed. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.  相似文献   

6.
Dissolution of large particles in DC-cast 7xxx aluminum alloys is one of the primary objectives of the homogenization process. A mathematical model to describe and predict this complex thermodynamical and kinetical process is of great significance. In this paper, the details of a diffusion-limited dissolution model, based on the thinning, discontinuation and full dissolution (TDFD) mechanism, to predict the dissolution of the Al17(Fe3.2, Mn0.8)Si2 particles is described. The model is capable of predicting the volume fraction and thickness of the particles during homogenization at different temperatures and time intervals. The predicted results are in good agreement with measurements using quantitative X-ray diffraction (QXRD) and quantitative field emission gun-scanning electron microscopy (QSEM). The model predictions of the supersaturation parameter, interface position, interface movement rate of the planar surfaces and the cylindrical edges, and the effect of the occurrence of discontinuities on the dissolution extent are presented.  相似文献   

7.
Erhan Albayrak 《中国物理 B》2017,26(2):20502-020502
The magnetic behaviors of the Fe–Mn–Al alloy are simulated on the Bethe lattice by using a trimodal random bilinear exchange interaction(J) distribution in the Blume–Capel(BC) model. Ferromagnetic(J 0) or antiferromagnetic(J 0)bonds or dilution of the bonds(J = 0) are assumed between the atoms with some probabilities. It is found that the secondor the first-order phase boundaries separate the ferromagnetic(F), antiferromagnetic(AF), paramagnetic(P), or spin-glass(SG) phases from the possible other one. In addition to the tricritical points, the special points at which the second- and the first-order and the spin-glass phase lines meet are also found. Very rich phase diagrams in agreement with the literature are obtained.  相似文献   

8.
The age hardening 6061-T6 aluminium alloy has been chosen as structural material for the core vessel of the material testing Jules Horowitz nuclear reactor. The alloy contains incoherent Al(Cr, Fe, Mn)Si dispersoids whose characterization by energy-filtered transmission electron microscopy (EFTEM) analysis shows a core/shell organization tendency where the core is (Mn, Fe) rich, and the shell is Cr rich. The present work studies the stability of this organization under irradiation. TEM characterization on the same particles, before and after 1 MeV electron irradiation, reveals that the core/shell organization is enhanced after irradiation. It is proposed that the high level of point defects, created by irradiation, ensures a radiation-enhanced diffusion process favourable to the unmixing forces between (Fe, Mn) and Cr. Shell formation may result in the low-energy interface segregation of Cr atoms within the (Fe, Mn) system combined with the unmixing of Cr, Fe and Mn components.  相似文献   

9.
The nucleation behaviour of the homogenization-induced Al6(Fe,?Mn)-to-α-Al–(Fe,?Mn)–Si transformation is investigated in a companion paper to part I (a study with roll-bonded diffusion couples). Diffusion experiments using silicon-coated Al–0.53?wt%?Fe–1.02?wt%?Mn alloy blocks allow control of the thermodynamic driving force for transformation within a microstructure typical of a cast ingot. As expected, this microstructure appears to give ready and yet stochastic nucleation as silicon diffuses into the alloy sections. In addition, transmission electron microscopy is used to analyse partially transformed particles in heat-treated alloy samples of fixed silicon content. This confirms the suggestion made in part I that the transformation preferentially nucleates at matrix grain/cell boundaries. Nucleation theory suggests this results from the ability of the boundaries to relieve volume changes associated with the nucleation event.  相似文献   

10.
11.
Roll-bonded diffusion couples are used to investigate a transformation of intermetallic particles from Al6(Fe,?Mn) to α-Al–(Fe,?Mn)–Si that occurs upon homogenization of 3XXX aluminium alloys. By diffusing silicon into an Al–Fe–Mn alloy, the couples permit a progressive increase in the driving force for this 6-to-α transformation, thus allowing study of the nucleation of the transformation. Initially, the aluminium matrix is highly defected from rolling. This microstructure gives frequent (yet stochastic) nucleation of a eutectoid 6-to-α transformation expected from study of direct-chill-cast 3XXX alloys. However, once the matrix has recrystallized, nucleation is restricted to particles that lie on the matrix grain boundaries. The remaining particles, unable to transform eutectoidally, dissolve and supply growth of these α-phase particles, producing marked coarsening.  相似文献   

12.
Using atom probe tomography, the partitioning of alloying elements between α and β in the alloy Ti metal-5553 (Ti–5Al–5Mo–5V–3Cr–0.5Fe) has been investigated as a function of heat-treatment. It has been shown that β-solutionizing followed by step-quenching to a higher temperature (700°C) or slow-cooling leads to substantial partitioning of the alloying elements, including an enrichment of slow-diffusing Mo at the α/β interfaces. In contrast, it was found that the combination of β-solutionizing, quenching to room temperature and aging at 400°C leads to rather limited partitioning of these alloying elements.  相似文献   

13.
Niko Rozman  Jožef Medved 《哲学杂志》2013,93(33):4230-4246
This study investigates the effects of alloying elements on the microstructural evolution of Al-rich Al–Mn–Cu–(Be) alloys during solidification, and subsequent heating and annealing. The samples were characterised using scanning electron microscopy, energy dispersive X-ray spectroscopy, synchrotron X-ray diffraction, time-of-flight secondary-ion mass spectroscopy, and differential scanning calorimetry. In the ternary Al94Mn3Cu3 (at%) alloy, the phases formed during slower cooling (≈1?K?s?1) can be predicted by the known Al–Mn–Cu phase diagram. The addition of Be prevented the formation of Al6Mn, decreased the fraction of τ1-Al29Mn6Cu4, and increased the fraction of Al4Mn. During faster cooling (≈1000?K?s?1), Al4Mn predominantly formed in the ternary alloy, whereas, in the quaternary alloys, the icosahedral quasicrystalline phase dominated. Further heating and annealing of the alloys caused an increase in the volume fractions of τ1 in all alloys and Be4Al (Mn,Cu) in quaternary alloys, while fractions of all other intermetallic phases decreased. Solidification with a moderate cooling rate (≈1000?K?s?1) caused considerable strengthening, which was reduced by annealing for up to 25% in the quaternary alloys, while hardness remained almost the same in the ternary alloy.  相似文献   

14.
The extreme brittleness of Al–Pd–Mn quasi-crystalline alloys over a wide range of temperatures drastically restricts investigation of their plastic deformation mechanisms over a small high-temperature regime. Recently, plastic deformation of Al–Pd–Mn quasicrystal has been achieved in the brittle domain (20?≤?T?≤?690°C) using specific deformation devices, which combined a uniaxial compression deformation or a shear deformation with a hydrostatic pressure confinement (0.35–5?GPa). Results of these experimental techniques, which provide various deformation conditions giving rise to a range of Al–Pd–Mn plastic features in the brittle domain, are discussed. On this basis, we propose that low and intermediate temperature plastic properties of Al–Pd–Mn are controlled by non-planar dislocation core extensions specific to the non-periodic structure.  相似文献   

15.
An Al3Mn-type Al3(Mn, Pd) crystal and an Al–Mn–Pd decagonal quasicrystal (DQC) in an Al70Mn20Pd10 alloy are studied using a spherical aberration (Cs)-corrected scanning transmission electron microscope (STEM) with high-angle annular dark-field (HAADF) and annular bright-field (ABF) techniques, together with atomic-resolution energy dispersive X-ray spectroscopy (EDS). Mn and Pd atomic positions in the Al3(Mn, Pd) structure projected along the b-axis (pseudo-tenfold rotational axis) are represented by separate bright dots in observed HAADF-STEM images. Besides, Al as well as Mn and Pd atomic positions are represented as dark dots in ABF-STEM images. Most Mn and Pd atomic positions in the Al3(Mn, Pd) structure can be observed on atomic-resolution EDS maps. On the basis of the good correlation between the STEM images and the EDS maps, and also considering the structure of the Al3(Mn, Pd) crystal, which was determined by X-ray diffraction using a single crystal, observed HAADF and ABF-STEM images of the Al–Mn–Pd DQC have been interpreted. Pd and Mn atomic positions in the Al–Mn–Pd DQC can be detected on the observed EDS maps. It can be seen that Pd is enriched around the centre of the columnar clusters, having a decagonal section with 2 nm in diameter. It can therefore be concluded that Pd plays an important role in the stabilization of the decagonal clusters, which form the Al–Mn–Pd DQC structure.  相似文献   

16.
Coarse, rod-shaped precipitates growing along ?100?Al directions in an Al–1.0?wt% Mg2Si alloy with 0.5?wt% Ag additions were investigated by high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). All investigated precipitates had complex structures, being composed of domains separated by anti-phase resembling boundaries. The domains consist of a modified hexagonal β′-type structure that contains a considerable amount of Ag. Based on HAADF-STEM images, an average atomic model with space group P-62?m (189) and composition Al3Mg3Si2Ag is proposed, having Al incorporation and Ag replacing certain Si atomic columns. Co-existence with the Ag-free β′-Mg9Si5 phase has been observed for some precipitates. The boundaries may be described as full or half units of the orthorhombic U2-AlMgSi precipitate phase. The HAADF-STEM images indicate partial replacements of Al atoms by Ag, in both the β′-type domains and the U2-type boundaries. Ag enrichment of the Al matrix near the precipitate/Al interface was observed for all the investigated precipitates  相似文献   

17.
The influence of stress-induced ε-martensitic transformation on the serrated flow behavior associated with dynamic strain aging was investigated. The ε-martensitic transformation was controlled by changing the deformation temperature and adding Si to Fe–17Mn–xSi–0.3?C alloys. The addition of Si promoted the ε-martensitic transformation, and suppressed the slip deformation due to solution hardening. The initiation of serrations around room temperature was delayed by the promotion of ε-martensitic transformation which initiated plastic deformation. The critical stress for the occurrence of serrations and the critical stress for the occurrence of slip deformation were found to have a linear relationship.  相似文献   

18.
In this work we report the experimental studies of Fe?Mn?Al alloys in the FCC disordered phase at room temperature by Mössbauer spectroscopy and X-ray diffraction. In this phase the alloys are antiferromagnetic with a constant mean hyperfine field ( \(\bar H\) ) near 26 kOe in the composition range from 0 to 7.5 at.% Al and 50 to 65 at.% Fe. When the Al or Fe concentration increases, the \(\bar H\) value gradually decreases to zero and the alloy becomes paramagnetic. In the same way when the Al concentration increases the lattice parameter increases linearly but when the Fe concentration increases the lattice parameter remains nearly constant for alloys with 5 at.% Al and decreases for alloys with 10 at.% Al.  相似文献   

19.
The purpose of this paper is to investigate the isothermal behavior of Fe–27.3Mn–7.6Al–C–6.5Cr–0.25Si–0.88Mo (Mo(0)) and Fe–27.3Mn–7.6Al–1.0C–6.5Cr–0.25Si (Mo(1)) alloys and compare it against Fe–9Cr–1Mo (FCR) commercial alloy. The experiments were carried out at 600°C, 700°C, 750°C and 850°C, each one during 72 h in static air. The oxidation kinetics was measured as a function of time using a Thermogravimetry analyzer (TGA). The structure and composition of the oxide scale were characterized by X-ray diffraction (XRD) and Integral Conversion Electron Mössbauer Spectroscopy (CEMS). The TGA results show that at all oxidation temperatures the sample FCR exhibit the lowest kinetic corrosion and the lowest weight gain, whereas Mo(0) the highest. By CEMS technique it were found a broad magnetic sextet, which has been fit by one hyperfine field distribution with mean hyperfine field characteristic to ferritic/martensite phase, one Fe3?+? doublet and one singlet for the Mo(0) and Mo(1) alloys. Samples oxidized at highest temperatures exhibit a strong paramagnetic line, probably due that the Cr or Mn oxides may be enriched on the surface. Then, the magnetic phase can be converted partially into austenite phase at highest temperatures.  相似文献   

20.
Serrated flow has been observed during non monotonic tensile tests of an Al–Cu aluminium alloy in the naturally aged state. The associated propagative localisation bands were observed by digital image correlation (DIC). In particular, the Portevin-Le Chatelier (PLC) effect and also Lüders bands were observed in interrupted tests during which the specimen was held for a length of time and also in tests with partial unloading followed by a holding time. Increasing strain rate jumps also triggered the PLC effect. These observations indicate the existence of the PLC effect in this material which was formerly considered insensitive to it at room temperature under monotonic loading conditions. There is no evidence of PLC serrations during constant strain rate tests. A strain ageing finite element model is used that captures the experimentally found PLC triggering effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号