首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This paper presents the results of the first-principles density functional theory calculation of the phonon spectrum of the ??-GaS semiconductor with a layered structure. The elastic constants and velocities of sound along and across the layers of the ??-GaS semiconductor have been determined. Investigation of the equilibrium structure and the phonon spectrum of the (0001) surface of the ??-GaS crystals has demonstrated that the bulk and surface structural and dynamical properties of these crystals differ only slightly. The calculated frequencies and symmetries of phonon modes at the center of the Brillouin zone of the semiconductor are in satisfactory agreement with the experimental data obtained from the Raman and infrared spectra.  相似文献   

3.
4.
We study the electronic transport in the presence of electron–phonon interaction (EPI) for a molecular electronic device. Instead of mean field approximation (MFA), the related phonon correlation function is conducted with the Langreth theorem (LT). We present formal expressions for the bandwidth of the electron’s spectral function in the central region of the devices, such as quantum dot (QD), or single molecular transistor (SMT). Our results show that the out-tunneling rate depends on the energy, bias voltage and the phonon field. Besides, the predicted conductance map, behaving as a function of bias voltage and the gate voltage, gets blurred at the high bias voltage region. These EPI effects are consistent with the experimental observations in the EPI transport experiment.  相似文献   

5.
With the help of a unified nuclear-structure-direct-reaction theory we analyze the reaction 1H(11Li,?Li)3H. The two halo neutrons are correlated through the bare and the induced (medium polarization) pairing interaction. By considering all dominant reaction channels leading to the population of the 1/2? (2.69 MeV) first excited state of ?Li, namely, multistep transfer (successive, simultaneous, and nonorthogonality), breakup, and inelastic channels, it is possible to show that the experiment provides direct evidence of phonon mediated pairing.  相似文献   

6.
We investigate the electron–phonon interaction in a polar–polar single heterostructure through the use of the linear combination of hybrid phonon modes, considering the role of longitudinal optical, transverse optical and interface modes, using a continuum model that accounts for both mechanical and electrical continuity over a heterostructure interface. We discuss the use of other models for such systems, such as the bulk phonon (3DP) and dielectric continuum (DC) models, using previously developed sum-rules to explain the limitations on their validity. We find that our linear combination (LC) model gives an excellent agreement with scattering rates previously derived using the 3DP and DC models when the lattice dispersion is weak enough to be ignored, however, when there is a noticeable lattice dispersion, the LC model returns a different answer, suggesting that interface modes play a much greater part in the scattering characteristics of the system under certain conditions. We also discuss the remote phonon effect in polar/polar heterostructures.  相似文献   

7.
Electronic Raman scattering in YB6 and in its structural and electronic analog LaB6 has been studied in the temperature range of 10–730 K. The experimental spectra have been compared to those calculated on the basis of ab initio band structures with renormalization owing to the electron–phonon interaction. Good agreement between the calculation and experiment for LaB6 has been obtained throughout the entire temperature range. This allows the determination of the coupling constant λ ep = 0.25. To satisfactorily describe the spectra of electronic light scattering in YB6, it is necessary to introduce an additional electron relaxation channel. In this case, the estimate of the electron–phonon coupling constant λ ep is no more than 0.4; for this reason, a high superconducting transition temperature cannot be explained only by the phonon mechanism.  相似文献   

8.
Temperature-dependent Raman investigations of titanium in the α and pressure-quenched ω-phase have been carried out. The results obtained suggest the possible coexistence of both phases at ambient pressure and low temperatures. Comparison of the low-temperature E2g phonon self-energies in both phases with simulations based on the calculated electronic structures for α- and ω-Ti implies significant contributions from non-adiabatic electron–phonon interactions.  相似文献   

9.
The temperature dependences of the total heat capacity and the lattice components of the bulk modulus, the volume thermal expansion coefficient, and the mean-square deviation of atoms from the equilibrium positions of nearly magnetic δ-plutonium (using the Pu0.96Ga0.04 alloy as an example) have been calculated within the framework of the self-consistent thermodynamic model. The electronic heat capacity has been calculated using the results obtained in terms of the self-consistent spin-fluctuation theory based on the inclusion of the strong magnetic anharmonicity, which leads to a splitting of the electronic spectra by fluctuating exchange fields. On this basis, the effect of phonon anharmonicity not only on the lattice heat capacity but also on other thermal and elastic properties has been considered.  相似文献   

10.
We have calculated the structural and electronic properties of SrPtAs in a hexagonal KZnAs-type of crystal structure using a generalized gradient approximation of the density functional theory and the ab initio planewave pseudopotential method. These results are used to further calculate the phonon dispersions curves and the phonon density of states using a linear response approach based on the density functional theory. Using the electronic and phonon results, the electron–phonon coupling is computed to be of the intermediate strength of 0.78. In large part, this is contributed by the phonon modes dominated by the vibrations of Pt and As atoms. The superconducting critical temperature is estimated to be 1.9 K, in good accord with its experimental value of 2.4 K.  相似文献   

11.
12.
Efficient design of optoelectronic devices based on electron intersubband transitions depends critically on the knowledge of the intersubband relaxation times which in turn, depends on electron scattering with LO and acoustic phonons. In this article the intersubband scattering time associated with electron–acoustic-phonon interaction has been discussed in terms of phonon mode quantization and phonon confinement with describing the acoustic phonon dispersion relation in detail by introducing the cut-off frequency for each mode. It has been shown that the quantization of acoustic phonon modes lead to an enhancement in electron–phonon scattering time in AlGaAs quantum well structures. Based on the presented model, a new tailoring method has presented to adjust the electron–phonon scattering time in intersubband-transition-based structures while keeping the electronic properties unaltered. Also, we illustrated that for a quantum well with subband energy separation of ∼30 meV, the intersubband scattering time with acoustic-phonon-assisted transitions could be tailored from ∼120 ps to increased value of ∼400 ps or reduced value of ∼45 ps by inserting a 1 nm-thickacoustically soft or hard layers, respectively, while keeping the same the initial energy separation.  相似文献   

13.
The apertureless scanning near-field microscope (ASNOM) mapping of surface phonon polariton (SPP) waves being excited at the surface of the SiC polar crystal at a frequency corresponding to the lattice resonance was investigated. The wave with well-defined direction and source position, as well as a well-known propagation law, was used to calibrate the signal of an ASNOM. An experimental proof is presented showing that the signal collected by the ASNOM in such a case is proportional (as a complex number) to the local field amplitude above the surface, regardless of the tip response model. It is shown that the expression describing an ASNOM response, which is, in general case, rather complicated nonlinear function of a surface/tip dielectric constants, wavelength, tip vibration amplitude, tip shape etc., can be dramatically simplified in the case of the SPP waves mapping in a mid-IR range, due to a lucky combination of the tip and surface parameters for the case being considered. A tip vibration amplitude is much less than a running SPP wave field decay height in a normal direction. At the same time, the tip amplitude is larger than a characteristic distance at which a tip–surface electromagnetic near-field interaction plays a significant role.  相似文献   

14.
The thermal shifts of R1 and R2 lines of Cr3+-doped garnets Y3Ga5O12 (YGG), Y3Sc2Al3O12 (YSAG) and Gd3Sc2Al3O12 (GSAG) are studied by considering both the static contribution (which is frequently neglected in the previous papers) due to lattice thermal expansion and the vibrational contribution due to electron–phonon interaction. In the studies, the static contribution is calculated with the thermal expansion coefficient of the corresponding cluster in the host garnet crystals. The results indicate that the static contributions in sign are opposite to and in magnitude are about 10% of the corresponding vibrational contributions. The true electron–phonon coupling parameters α′ obtaining by taking both contributions into account increase more than 10% in comparison with the corresponding apparent electron–phonon coupling parameters α determined by considering only the vibrational contribution in the previous paper. So, to obtain the complete understanding of thermal shift of a spectral line and the true rather than apparent electron–phonon coupling parameters, one should take account of both the static and vibrational contributions.  相似文献   

15.
Counter-rotating-wave terms(CRWTs)are traditionally viewed to be crucial in open small quantum systems with strong system–bath dissipation.Here by exemplifying in a nonequilibrium qubit–phonon hybrid model,we show that CRWTs can play the significant role in quantum heat transfer even with weak system–bath dissipation.By using extended coherent phonon states,we obtain the quantum master equation with heat exchange rates contributed by rotating-waveterms(RWTs)and CRWTs,respectively.We find that including only RWTs,the steady state heat current and current fluctuations will be significantly suppressed at large temperature bias,whereas they are strongly enhanced by considering CRWTs in addition.Furthermore,for the phonon statistics,the average phonon number and two-phonon correlation are nearly insensitive to strong qubit–phonon hybridization with only RWTs,whereas they will be dramatically cooled down via the cooperative transitions based on CRWTs in addition.Therefore,CRWTs in quantum heat transfer system should be treated carefully.  相似文献   

16.
17.
18.
19.
《Surface science》1988,200(1):L441-L444
The problem of the anomalous softening of the surface phonons on noble metal 〈111〉 surfaces is addressed using the embedded atom method. The results indicate that the observed decrease in the force constant between atoms in the surface layer can be attributed to a slight increase in the electron density in the surface layer ( ∼ 7% of the free electron density).  相似文献   

20.
Atomic scale characterization of chemical ordering, compositional distribution and microstructure is of tremendous importance for applications such as catalysis which is primarily dominated by processes occurring at surface and is strongly influenced by the subsurface layers. Phonon spectra obtained from molecular dynamics simulations of single metals as well as their bimetallic and ternary alloy nanoclusters can be used to obtain new insights into the atomic scale distribution in the nanoclusters, their microstructure and dynamical properties. Monte-Carlo (MC) simulations are used to obtain the minimum energy configurations of various Ag–Cu–Ni ternary alloys in which the Ag content is systematically varied from 0 to 50%Ag while keeping the relative composition of Cu and Ni constant. Detailed compositional analyses of the final MC configurations are carried out. The generated microstructure comprised of surface segregated structures in which Ag atoms occupy low coordination sites such as corners, edges and faces. As the Ag content in the ternary alloy is increased, the surface sites get increasingly occupied with the lowest coordination sites being populated first. The Cu and Ni compositions in the interior of the cluster show compositional oscillation. The final alloy microstructure is dictated by the competition between the various entropic and energetic factors. Our analysis of the phonon density of states identifies various surface (low frequency) and bulk (high frequency) modes which is determined by their location in the nanocluster and the local environment. Systematic trends in the observed peak intensities and frequency shifts at the low and high frequency ends of the spectrum for the various alloy compositions are explained on the basis of bond-lengths, local coordination, extent of alloying, and neighboring elemental environment. We find that the characteristic microstructural features observed at the atomic scale are strongly correlated to the vibrational densities of states of the constituent atoms in nanoalloys. Comparisons with experimental investigations are made where possible. Such a characterization method provides a predictive tool for materials which are extremely important for catalytic applications and emerging energy technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号