首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polycrystalline, double-layered, colossal magnetoresistive manganite La1.2Sr1.8Mn2O7 is synthesized by sol-gel process and its magnetic and ultrasonic properties were investigated in the temperature range 80–300 K. The sample has Curie temperature at 124 K, where the sample exhibits a transition from paramagnetic insulator to ferromagnetic metallic state. The longitudinal sound velocity measurements show a significant hardening of sound velocity below TC, which may be attributed to the coupling between ferromagnetic spins and longitudinal acoustic phonons. The magnetization and ultrasonic studies reveal the presence of secondary transition at ≈ 260 K in this sample. The present sound velocity measurement results confirm the reliability of ultrasonic investigations as an independent tool to probe magnetic transitions in manganites.  相似文献   

2.
郑新奇  沈俊  胡凤霞  孙继荣  沈保根 《物理学报》2016,65(21):217502-217502
磁制冷技术的发展取决于具有大磁热效应磁制冷材料的研发进展.经过长期的工作积累,特别是近20年来的努力,许多新型磁制冷材料的探索和研究极大地促进了磁制冷技术的进步.本文介绍了磁热效应的基本原理和磁制冷研究的发展历史,系统综述了低温区和室温区具有大磁热效应的磁制冷材料的研究进展,重点介绍了一些受到较为关注的磁热效应材料的最新研究成果.低温区磁制冷材料主要包括具有低温相变的二元稀土基金属间化合物(RGa,RNi,RZn,RSi,R_3Co以及R_(12)Co_7)、稀土-过渡金属-主族金属三元化合物(RTSi,RTAl,RT_2Si_2,RCo_2B_2,RCo_3B_2)以及四元化合物RT_2B_2C等,其中R代表稀土元素,T代表过渡金属.这些材料一般都具有二级相变,具有良好的热、磁可逆性,也因其合金属性具有良好的导热性.室温区磁制冷材料主要包括Gd-Si-Ge,La-Fe-Si,Mn As基,Mn基Husler合金,Mn基反钙钛矿,Mn-Co-Ge,Fe-Rh以及钙钛矿氧化物等系列.这些材料一般都具有一级相变,多数在室温具有巨大的磁热效应而受到国内外的极大关注.其中,La-Fe-Si系列是国际上普遍认为具有重要应用前景的磁制冷工质之一,也是我国具有自主知识产权的材料.本文还对磁制冷材料的发展方向进行了展望.  相似文献   

3.
郝志红  王海英  张荃  莫兆军 《物理学报》2018,67(24):247502-247502
EuTi0_3是直接带隙半导体材料,在液氦温度附近呈现反铁磁性,且具有较大的磁熵变,但是当其转变为铁磁性时,可以有效提高低磁场下的磁熵变.本文通过元素替代,研究晶格常数的变化和电子掺杂对磁性和磁热效应的影响.实验采用溶胶凝胶法制备EuTiO_3和Eu_(0.9)M_(0.1)TiO_3 (M=Ca, Sr, Ba, La, Ce, Sm)系列样品.结果表明:大离子半径的碱土金属离子替代提高了铁磁性耦合,有利于提高低磁场下的磁热效应.电子掺杂可以抑制其反铁磁性耦合从而使其表现为铁磁性.当大离子半径的稀土La和Ce离子替代Eu离子时,既增大了晶格常数也实现了电子掺杂,表现出较强的铁磁性.在1 T的磁场变化下,Eu_(0.9)La_(0.1)TiO_3和Eu_(0.9)Ce_(0.1)TiO_3的最大磁熵变分别为10.8和11 J/(kg·K),均大于EuTi0_3的9.8 J/(kg·K);制冷能力分别为39.3和51.8 J/kg,相对于EuTi0_3也有所提高.  相似文献   

4.
We survey the magnetocaloric effect in perovskite-type oxides (including doped ABO 3-type manganese oxides, A3B2O7-type two-layered perovskite oxides, and A2B'B'O6-type ordered double-perovskite oxides). Magnetic entropy changes larger than those of gadolinium can be observed in polycrystalline La1-xCaxMnO3 and alkali-metal (Na or K) doped La0.8Ca0.2MnO3 perovskite-type manganese oxides. The large magnetic entropy change produced by an abrupt reduction of magnetization is attributed to the anomalous thermal expansion at the Curie temperature. Considerable magnetic entropy changes can also be observed in two-layered perovskites La1.6Ca1.4Mn2O7 and La2.5-xK0.5+xMn2O7+δ (0 x 0.5), and double-perovskite Ba2Fe1+xMo1-xO6 (0 ≤ x ≤ 0.3) near their respective Curie temperatures. Compared with rare earth metals and their alloys, the perovskite-type oxides are lower in cost, and they exhibit higher chemical stability and higher electrical resistivity, which together favor lower eddy-current heating. They are potential magnetic refrigerants at high temperatures, especially near room temperature.  相似文献   

5.
The magnetic properties and magnetocaloric effect(MCE) in EuTi_(1-x)Co_xO_3(x = 0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti~(4+) ions were substituted by Co2+ions, the delicate balance was changed between antiferromagnetic(AFM) and ferromagnetic(FM) phases in the EuTiO_3 compound. In EuTi_(1-x)Co_xO_3 system, a giant reversible MCE and large refrigerant capacity(RC) were observed without hysteresis. The values of -?S_M~(max) were evaluated to be around 10 J·kg~(-1)·K~(-1) for EuTi_(0.95)Co_(0.05)O_3 under a magnetic field change of 10 kOe. The giant reversible MCE and large RC suggests that EuTi_(1-x)Co_xO_3 series could be considered as good candidate materials for low-temperature and low-field magnetic refrigerant.  相似文献   

6.
E.Yüzüak  B.Emre  Y.Elerman}  A.Yücel} 《中国物理 B》2010,19(5):57501-057501
The crystal structure,magnetic and magnetocaloric characteristics of the pseduo ternary compounds of Tb5Ge2 xSi2 xMn2x(0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements.The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements.Magnetic phase transitions were interpreted in terms of Landau theory.Maximum isothermal magnetic entropy change value(20.84 J.kg-1.K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5 T.  相似文献   

7.
The magnetic properties and magnetocaloric effect(MCE)of EuTi(1-x)NbxO3(x=0.05,0.1,0.15,and 0.2)compounds are investigated.Owing to electronic doping,parts of Ti ions are replaced by Nb ions,the lattice constant increases and a small number of Ti4+(3d^0)ions change into Ti3+(3d^1).It is the ferromagnetism state that is dominant in the derivative balance.The values of the maximum magnetic entropy change(-?SMmax)are 10.3 J/kg·K,9.6 J/kg·K,13.1 J/kg·K,and 11.9 J/kg·K for EuTi(1-x)NbxO3(x=0.05,0.1,0.15,and 0.2)compounds and the values of refrigeration capacity are 36,33,86,and 80 J/kg as magnetic field changes in a range of 0 T–1 T.The EuTi(1-x)NbxO3(x=0.05,0.1,0.15,and 0.2)compounds with giant reversible MCE are considered as a good candidate for magnetic refrigerant working at lowtemperature and low-field.  相似文献   

8.
王芳  原凤英  汪金芝 《物理学报》2013,62(16):167501-167501
研究了Mn42Al50-xFe8+x合金的结构、磁性和磁热效应. 通过成分调节, 居里温度TC在室温附近一宽温区连续可调, 分别为270 K (Mn42Al42Fe16), 341 K (Mn42Al40Fe18)和370 K(Mn42Al38Fe20). 磁化强度在相变温度处发生一陡降, 热磁曲线和等温磁化曲线均未观察到热和磁的滞后, 表明发生一可逆的二级相变. 在各自居里温度附近, 0-5 T的外磁场变化下磁熵变峰值分别为2.48, 2.52和2.40 J·kg-1·K-1. Mn50-xAl50-yFex+y合金的磁熵变峰值虽然与许多优良的磁制冷材料相比并不大, 但是制备该化合物的原材料价格非常低廉, 制备工艺简单, 加工成型也较容易, 化合物本身耐腐蚀性、延展性较好, 且在居里温度附近发生的是可逆的二级相变, 无晶格或结构的变化, 有利于制冷剂的多次循环使用. 关键词: 磁性 磁热效应 二级相变  相似文献   

9.
张虎  邢成芬  龙克文  肖亚宁  陶坤  王利晨  龙毅 《物理学报》2018,67(20):207501-207501
磁熵变(△SM)与磁场(μ0H)的相关性已在很多二级相变材料中被研究并报道,但一级相变材料的磁热效应与磁场相关性还少有报道.本文在具有一级磁结构相变的Mn0.6Fe0.4NiSi0.5Ge0.5材料中研究发现△SM与μ0H存在线性相关性,并通过麦克斯韦关系式的数值分析详细讨论了这一线性相关性的来源.同时,进一步发现在低磁场时,△SM近似正比于μ0H的平方.该线性相关性同样在一级磁结构相变Ni50Mn34Co2Sn14材料中得到了印证.但由于一级磁弹相变LaFe11.7Si1.3材料相变温度具有更强的磁场依赖性,不具有△SM的线性相关性,因此,本研究表明,当磁结构相变材料的相变温度具有弱磁场依赖性时,△SM与μ0H具有线性相关性.进而,在磁场未达到相变饱和磁场以下,利用△SM与μ0H的线性相关性可以有效推测更高磁场下的△SM.  相似文献   

10.
Gd5Si4 magnets have attracted much attention due to their many appealing properties such as strong ferromagnetism, magnetovolume effect, and large reversal magnetocaloric effect (MCE). However, Gd5Si4 exhibits a relatively high Curie temperature (TC ∼336 K) with a narrow refrigeration temperature span, which limits the refrigeration application at room temperature. Here we show that the TC of Gd5Si4 can be reduced to 330 K and the phase transition temperature range can be effectively expanded by applying a high pressure of 6 GPa to the sample during heat treatment. In addition, the room-temperature magnetic entropy changes are improved and the refrigeration temperature span also becomes wider, which leads to an enhanced relative cooling power (RCP) of 748 Jkg-1 under a magnetic field change of 5 T. These unique features indicate that the Gd5Si4 compound prepared under high pressure can serve as a magnetic refrigerant in a wide temperature range covering room temperature.  相似文献   

11.
E. Yüzüak  I. Dincer  Y. Elerman 《中国物理 B》2010,19(3):37502-037502
The magnetocaloric properties of the Gd 5 Ge 2.025 Si 1.925 In 0.05 compound have been studied by x-ray diffraction,magnetic and heat capacity measurements.Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Gd5Ge2Si2-type structure and a small quantity of Gd 5(Ge,Si) 3-type phase at room temperature.At about 270 K,this compound shows a first order phase transition.The isothermal magnetic entropy change(△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change(△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data.The maximum S M is 13.6 J·kg-1·K-1 and maximum △Tad is 13 K for the magnetic field change of 0-5 T.The Debye temperature(θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV·atom from the low temperature zero-field heat-capacity data.A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925 In 0.05 compound an attractive candidate for a magnetic refrigerant.  相似文献   

12.
1IntroductionWiththediscoveryofcolossalmagnetoresistance(CMR)effectinmanganites,hole-dopingperovskitemanganiteswithunusualelectronictransportandmagneticpropertieshaveattractedconsiderableattention.Thesepropertiesresultfromanintrinsicinteractionbetweencharge,spin,orbitalandlatticedegreesoffreedomthatarestronglycoupledtoeachother[1—6].DoubleexchangemodelcombinedwithJohn-Tellereffectwasusedtoexplainthesepropertiespartly[7—9].InordertogetbetterunderstandingofthemechanismofCMReffect,externals…  相似文献   

13.
14.
We study the magnetocaloric effect (MCE) in van der Waals (vdW) crystal CrBr3. Bulk CrBr3 exhibits a second-order paramagnetic-ferromagnetic phase transition with TC = 33 K. The maximum magnetic entropy change −ΔSM near TC is about 7.2 J·kg−1·K−1 with the maximum adiabatic temperature change ΔTmaxad = 2.37 K and the relative cooling power RCP= 191.5 J·kg−1 at μ0H = 5 T, all of which are remarkably larger than those in CrI3. These results suggest that the vdW crystal CrBr3 is a promising candidate for the low-dimensional magnetic refrigeration in low temperature region.  相似文献   

15.
Magnetocaloric effect (MCE) in polycrystalline HoMn2O5 was investigated by isothermal magnetization curves from 2 K to 50 K. A relatively large magnetic entropy change, △SM = 7.8 J/(kg · K), was achieved with the magnetic field up to 70 kOe (1 Oe = 79.5775 A · m-1). The magnetic entropy change is reversible in the whole range of temperature. The contributions of elastic and magnetoelastic energy to the changing of the magnetic entropy are discussed in terms of the Landau theory. The reversibility of MCE with maximal refrigerant capacity RC = 216.7 J/kg makes polycrystalline HoMn2O5 promising as a magnetic refrigerant.  相似文献   

16.
王芳  沈保根  张健  孙继荣  孟凡斌  李养贤 《中国物理 B》2010,19(6):67501-067501
Magnetic properties and magnetocaloric effect of compound PrFe 12 B 6 are investigated.The coexistence of hard phase PrFe 12 B 6 and soft phase α-Fe causes interesting phenomena on the curves for the temperature dependence of magnetization.PrFe 12 B 6 experiences a first order phase transition at the Curie temperature 200 K,accompanied by an obvious lattice contraction,which in turn results in a large magnetic entropy change.The Maxwell relation fails to give the correct information about magnetic entropy change due to the first order phase transition nature.The large magnetic entropy changes of PrFe 12.3 B 4.7 obtained from heat capacity method are 11.7 and 16.2 J/kg.K for magnetic field changes of 0-2 T and 0-5 T respectively.  相似文献   

17.
(La0.55Gd0.15)Sr0.3MnO3中的磁热效应   总被引:2,自引:0,他引:2  
本对A位掺杂的超大磁阻材料(La0.55Gd0.15)Sr0.3MnO3的磁热效应进行了研究,通过不同温度下的等温磁化(M-H)曲线的测量和计算,发现伴随铁磁-顺磁相变出现大的磁热效应,额外的磁性交换作用将导致额外的磁熵变化。  相似文献   

18.
We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er3Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around Tc is found to result from the second-order ferromagnetic-to-paramagnetic transition. The max- imal value of magnetic entropy change is 24.5 J/kg.K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0-5 T. Large reversible MEC and RC indicate the potentiality of Er3Co as a candidate magnetic refrigerant at low temperatures.  相似文献   

19.
霍德璇  廖罗兵  李领伟  李妙  钱正洪 《中国物理 B》2013,22(2):27502-027502
The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg-1·K-1 and 13.3 J·kg-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed.  相似文献   

20.
刘俊  龚元元  徐桂舟  徐锋 《中国物理 B》2017,26(9):97501-097501
An investigation on the magnetostructural transformation and magnetocaloric properties of Ni_(48-x)Co_2Mn_(38+x)Sn_(12)(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co_2Mn_(38)Sn_(12) alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号