首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The title compounds have been synthesized at 1473 K from stoichiometric mixtures of the binary components Mg3N2, MgX2 (X = Cl, I) and BN in arc‐welded steel ampoules encapsulated in evacuated silica tubes. Mg2[BN2]Cl ( 1 ) and Mg8[BN2]5I ( 2 ) crystallize in the orthorhombic space groups Pbca (no. 61) and Imma (no. 74), respectively, with a = 6.6139(8)Å, b = 9.766(1)Å, c = 10.600(1)Å, Z = 8 for 1 and a = 13.535(3)Å, b = 9.350(2)Å, c = 11.194(2)Å, Z = 4 for 2 . The crystal structures are characterized mainly by Mg6 trigonal prisms which are condensed to 3D frameworks in different ways. Part of the trigonal prisms are centered by the [N—B—N]3— anions and other voids in the framework by the X anions. The magnesium environment around Cl is a very distorted monocapped trigonal prism (CN = 6+1) and that of I is a bicapped heptagonal prism (CN = 14+2). The bond lengths and bond angles for the relevant [BN2]3— anions are d(B—N) = 1.330 — 1.338Å, ∠N—B—N = 175.8° in 1 and d(B—N) = 1.330 — 1.339Å, ∠N—B—N = 176.8° — 178.0° in 2 . The vibrational spectra of the title compounds have been recorded and interpreted based on the Dh symmetry of the relevant [N—B—N]3— groups considering the site symmetry splitting.  相似文献   

2.
The crystal structures of [4.4.4]propellane (monoclinic, a=12.053, b=7.832, c=13.001 Å, β=104.89°, space group C2/c, Z=4) and [4.4.4]propellatriene (monoclinic, a=7.876, b=12.651, c=13.164 Å, β=122.81°, space group P21/c,Z=4) have been determined by X-ray analysis. In propellane the six-membered rings are in the chair conformation, in propellatriene they adopt the ‘half-chair’ conformation with a twofold axis passing through the centre of each double bond. In both cases the observed parameters correspond to virtual D3(32) molecular symmetry. Corrections have been applied for the effect of molecular libration. Strain-minimization calculations based on semi-empirical potential functions have been carried out and the molecular parameters so derived are compared with the experimental values.  相似文献   

3.
Two complexes with enoxacin and ciprofloxacin were synthesized and the crystal structures are reported. Compound 1, [Cu(H-Eno) · Cl2] · 3H2O (H-Eno = Enoxacin), crystallizes in the triclinic system, space group P 1, with lattice parameters a = 8.7731(12) Å, b = 9.4976(14) Å, c = 13.2033(19) Å, α = 86.319(7)°, β = 71.912(7)°, γ = 80.604(7)°, V = 1031.6(3) Å3, Z = 2, D c = 1.625 mgm?3. 2, [Mn(Cip)2] · 2H2O (Cip = mono-anion of ciprofloxacin), crystallizes in the monoclinic, space group P2(1)/c, with lattice parameters a = 5.85690(10), b = 21.9490(6), c = 13.4443(3) Å, β = 100.9700(10)°, V = 1696.72(7) Å3, Z = 2, D c = 1.459 mgm?3.  相似文献   

4.
The molecular structures of gaseous tetrafluoro-p-benzoquinone (p-fluoranil) and tetramethyl-p-benzoquinone (duroquinone) have been investigated by electron diffraction. Except for the methyl group hydrogen atoms, the molecules are planar to within experimental error, but small deviations from planarity are completely compatible with the data. Values for the geometrical parameters (radistances and rα with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wavelength and correlation effects, are as follows. Tetrafluoro-p-benzoquinone: D2h symmetry (assumed); r(C0) = 1.211(6) Å, r(CC) = 1.339(12) Å, r(C-C) = 1.489(5') Å, r(C-F) = 1.323(5) Å, ∠C-C-C = 116.8(7)° and ∠C-C-F = 116.1(7)°. Tetramethyl-p-benzoquinone: C2h symmetry (assumed);r(C-H) = 1.102(18) Å, r(CO) = 1.229(8) Å, r(CC) = 1.352(8) Å, r(Csp2-Csp2) = 1.491(11) Å, r(Csp2-Csp3) = 1.504(12) A, ∠C-CO-C = 120.8(8)°. ∠C-C-CH3 = 116.1(8)°, ∠C-C-H = 110.5(34)° and α1 = α2 (methyl torsion = 30° (assumed).  相似文献   

5.
B-Tris(dimethylamino)borazine crystallizes in the monoclinic space group P21/a with a = 9.841, b = 17.61, c = 8.140 Å, β = 111.9°, and four molecules per unit cell. The molecule shows only small deviations from a planar structure of the symmetry D3h. The endocyclic and exocyclic B? N bonds are equal within the standard deviation (mean value 1.432 Å). The ring angles are different at the B atoms and the N atoms.  相似文献   

6.
The structures of the low-and high-temperature modifications of lithium orthotantalate, Li3TaO4, have been determined by neutron and X-ray diffraction methods. The low-temperature, or β, phase has symmetry C2c and lattice parameters a1 = 8.500(3), b1 = 8.500(3), c1 = 9.344(3)Å, and β = 117.05(2)°. The high-temperature, or α, phase has symmetry P2 and lattice parameters ah = 6.018(1), bh = 5.995(1), ch = 12.865(2)Å, and βh = 103.53(2)°. Both structures are ordered. The β-phase has a rock salt-type structure with a 3 : 1 ordering of the Li+ and Ta5+ ions. Its structure can be generated from the low-temperature modification by means of a complex pattern of shifts of the Ta5+ ions.  相似文献   

7.
Abstract

X-ray crystallographic investigation of the tertiary structure of simple 1-methylimidazolium (1-Meim) salts reveals that cation—cation face-to-face π—stacking with interplanar separations in the range typically seen for molecule—molecule and molecule—cation interactions are possible. Two salts are reported. 1-Meim-CF3SO3, 1, exists as a centrosymmetric dimer with an interplanar separation of only 3.16 Å. The two imidazolium rings are slipped to the extent that the interaction can be regarded as a manifestation of C—H…C—H dipole interactions. 1-Meim-NO3 exists as a one-dimensional (1-D) polymer with interplanar separations of 3.65 Å. The cations are not as severely slipped as for 1 and the interactions can be regarded as the result of cation—cation and anion—anion complementary electrostatics. Semi-empirical calculations are used to rationalize the π-π stacking in both 1 and 2. Crystal data: 1-Meim-CF3SO3, 1, triclinic, P1, a=6.416(3) Å, b=7.617(4) Å, c=9.569(4) Å, α=85.36(4)°, β=86.08(3)°, γ=85.18(4)°, V=463.6(4) Å,3 Z=2, Dc =1.66 g cm?3, μ=3.7 cm?1, T=17°C, R=0.054 and R w=0.076 for 1241 reflections; 1-Meim-NO3, 2, monoclinic, P21/c, a=9.009(7) Å, b=9.988(6) Å, c=7.308(5) Å, β=94.93(6)°, V=655.2(8) Å,3 Z=4, Dc =1.47 g cm?3, μ=1.2 cm?1, T=17°C, R=0.060 and R w=0.068 for 483 reflections.  相似文献   

8.
Abstract

It has been shown that host compound 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol is able to include polar guests and now we report on its ability to form clathrate compounds with apolar guests. The structures of this host with cyclohexane (1) and the ortho (2), meta (3) and para (4) xylenes have been determined and are discussed. Crystal data: (1) 2C30H22O2C6H12, M r = 913.20 g mol?1, mono-clinic, C2/c, a = 22.851(6), b = 14.010(2), c = 17.076(6) Å, β = 108.71(3)°, V = 5178(2) Å3, Z = 4, D c = 1.17g cm?3, N = 3326, R = 0.092. (2) 2C30H22O21 ½C8H10, M r = 1976.5 g mol?1, triclinic, P 1, a = 13.185(3), b = 15.466(3), c = 16.573(2) Å, α = 96.39(13)°, β = 106.96(15)°, γ = 114.94(18)°, V = 2822(2) Å3, Z = 2, D c = 1.16 g cm?3, N = 6152, R = 0.075. (3) 2C30H22O21 ½C8H10, M r = 1976.5 g mol?1, triclinic, P 1, a = 13.267(5), b = 15.453(3), c = 16.654(5) Å, α = 97.12(2)°, β = 107.09(3)°, γ = 114.68(3)°, V = 2843(2) Å3, Z = 2, D c = 1.15 g cm?3, N = 6505, R = 0.083. (4) 2C30H22O21 ½C8H10, M r = 1976.5 g mol?1, triclinic, P 1, α = 13.070(2), b = 15.348(3), c = 16.776(3) Å, α = 67.88<2)°, β = 74.27(1)°, γ = 65.29(1)°, V = 2817(1) Å3, Z = 2, D c = 1.15 g cm?3, N = 6711, R = 0.050. Thermal analysis studies were also performed in order to examine their stability and the strength with which the guest species are held in the crystal lattice.  相似文献   

9.
Two new cobalt complexes were successfully synthesized from the reaction of binaphthyl Schiff base 2 with Co(OAc)2 in the presence of sodium methoxide at 80 °C for 24 h and Co(acac)3 in toluene under reflux. Their unique crystal structures are unambiguously disclosed by X‐ray analysis. Complex 3 is triclinic, space group P1 , unit cell dimensions a = 10.742(2) Å, b = 11.153(2) Å, c = 12.715 Å, α = 79.865(3) °, β = 76.053 °, γ = 72.532(4) °, volume 1401.3(5) Å3, Z = 2. Complex 4 is triclinic, space group P1 , unit cell dimensions a = 10.801(2) Å, b = 12.554(3) Å, c = 15.219(3) Å, α = 105.672(4) °, β = 103.048 °, γ = 104.594(4) °, volume 1824.8(7) Å3, Z = 2, calculated density 1.428 Mg m−3. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The crystal structure of the liquid crystal dimer α,ω-bis(4-cyanobiphenyl-4'-yloxy)octane has been determined from diffraction data obtained with synchrotron radiation. The structure is triclinic, with the space group P-1 with Z = 2 and the unit cell parameters are a= 7.135(5) Å, b= 12.811(5) Å, c= 15.639(5) Å, α= 75.800(5)°, β= 84.690(5)°, γ= 77.930(5)°. The flexible spacer linking the mesogenic groups is in the all-trans-conformation. Although the molecule has a potential centre of symmetry, it occupies a general position in the cell; this unusual behaviour has been investigated with the aid of a theoretical evaluation of the packing energy.  相似文献   

11.
Synthesis and Crystal Structures of (Ph3PNPPh3)2[Re2Br10] and (Ph4P)[Re2Br9] Depending on the molar ratio by reaction of [n-Bu4N]2[ReBr6] with the Lewis acid BBr3 in dichloromethane the bioctahedral complexes [n-Bu4N]2[Re2Br10] and [n-Bu4N][Re2Br9] are formed. The X-ray structure determination on (Ph3PNPPh3)2[Re2Br10] (monoclinic, space group C 2/c, a = 20.007(4), b = 15.456(5), c = 24.695(4) Å, β = 107.53(2)°, Z = 4) reveals a centrosymmetric edge-sharing complex anion with approximate D2h symmetry and mean terminal and bridging Re–Br bond lengths of 2.453 (equatorial), 2.482 (axial) and 2.591 Å, respectively, and a Re–Re distance of 3.880 Å. (Ph4P)[Re2Br9] (triclinic, space group P 1, a = 11.062(2), b = 12.430(3), c = 13.163(5) Å, α = 72.94(2), β = 68.47(2), γ = 82.09(2)°, Z = 2) contains a confacial bioctahedral anion with nearly D3h symmetry and mean terminal and bridging Re–Br distances of 2.460 and 2.536 Å, respectively, and a Re–Re distance of 2.780 Å.  相似文献   

12.
The crystal structure of bicyclo [3.3.3]undecane-1,5-diol has been determined. It is monoclinic, P21/c, a = 12.99(2), b = 14.16(2), c = 12.50(1)A,β = 112.42(2)°, with two independent molecules in the asymmetric unit. One of these is disordered, but the other has almost exact C3h symmetry and its conformation and precise molecular geometry agree well with previous calculations by molecular mechanics. The molecule shows considerable angle strain, having bridge angles in the range 118–121°  相似文献   

13.
(2.2.2-Cryptand)potassium nitrate hydrate, [K(Crypt-222)](NO3) · 1.5H2O (I) was synthesized and studied by X-ray diffraction method. Crystals I are triclinic (space group P ī, a = 11.262 Å, b = 12.033 Å, c = 12.181 Å, α = 60.48°, β = 86.17°, γ = 66.20°, Z = 2). The structure was solved by the direct method and refined by the full-matrix least-squares method in anisotropic approximation to R = 0.065 from 3377 independent reflections (CAD-4 automated diffractometer, λMoK α). In complex I, the host-guest complex cation [K(Crypt-222)]+ has approximate D 3 symmetry. The coordination polyhedron of the K+ cation is a two-base-centered trigonal prism, which is slightly distorted toward antiprism. The disordered NO 3 ? anions and water molecules are united by hydrogen bonds into infinite chains along the x-axis.  相似文献   

14.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

15.
Synthesis and Structure of Crown Ether Complexes of Potassium Hexachlorodipalladate(II) and -diplatinate(II) K2[MCl4] (M ? Pd, Pt) reacts with an excess of crown ether 18-crown-6 in water to give the crown ether complexes of potassium hexachlorodipalladate(II) and -diplatinate(II) [K(18-cr-6)]2[M2Cl6] (M ? Pd, 1 ; M ? Pt, 3 ), respectively, and in methylene chloride to give those of potassium tetrachloropalladate(II) and -platinate(II) [K(18-cr-6)]2[MCl4] ( 1 ) (M ? Pd, 2 ; M ? Pt, 4 ), respectively. 1 - 4 are characterized by microanalysis, NMR (1H, 13C), and vibrational spectroscopy. The X-ray structure analyses of the isotypic complexes 1 (P21/c; a = 10,9678(8), b = 8,2991(7), c = 22,469(2) Å, β = 98,523(5)°; Z = 2) and 3 (P21/c; a = 10,934(3), b = 8.376(3), c = 22,410(5) Å, β = 98,77(3)°; Z = 2) reveal [M2Cl6]2? anions of nearly D2h symmetry and [K(18-cr-6)]+ cations, in which the distance of K+ to the mean plane of the crown ether defined by its six oxygen atoms amounts to 0,830(4) Å in 1 and 0,821(2) Å in 3 , respectively. There are tight contacts between cations and anions (d(K-Cl): 3,341(2)/3,260(2) Å ( 1 ); 3,348(4)/3,259(4) Å ( 3 )).  相似文献   

16.
Abstract

18-Crown-6 reacts with either TiCl4 or SnCl4 in toluene to form an addition complex in which the macrocycle functions as a bidentate ligand. The two compounds are isostructural and belong to the monoclinic space group P21/n. For Ti. the cell parameters are a = 10.501(6), b = 18.104(5), c = 10.955(5) Å, β = 109.76(3)°, and Dc = 1.55 g/cm3 for Z = 4; for Sn, a = 10.572(9), b = 18.139(6), c = 11.056(5) Å, β = 109.16(4)°, and Dc = 1.75 g/cm3. Least-squares refinement led to a final R = 0.037 for 1735 observed reflections for the Ti complex, and R = 0.038 for 2940 observed reflections for the Sn derivative. The M-Cl lengths range from 2.221(2)–2.285(2) Å for M = Ti, and from 2.353(2)–2.357(2) Å for M = Sn. The M—O bonds are 2.102(4) and 2.138(4) Å for M = Ti, and 2.212(4) and 2.237(4) Å for M = Sn.  相似文献   

17.
We report the synthesis of the diamagnetic double salt bis(tetra(n‐butyl)ammonium) phthalocyanato(2‐)lithate hexafluorophosphate (nBu4N)2[Lipc]PF6 [pc = phthalocyanine, nBu4N+ = tetra(n‐butyl)ammonium] in dme (dme = dimethoxyethane). According to single‐crystal X‐ray diffraction structure analysis [P$\bar{1}$ , a = 8.642(2) Å, b = 12.820(3) Å, c = 15.019(3) Å, α = 83.01(3)°, β = 87.87(3)°, γ = 74.45(3)°, Z = 1, R1 = 6.4 %], the phthalocyanine building bloc shows a substantial distortion of the macrocyclic ring from planarity. The deviation from D4h symmetry originates from packing effects induced by the two tetra(n‐butyl)ammonium cations located above and below the macrocycle. DFT structure optimization starting from the experimental non‐planar configuration produces a fully planar complex anion [Lipc].  相似文献   

18.
Two zinc complexes of enoxacin were synthesized and their crystal structures were determined. Compound 1, [Zn(H-Eno) · Cl2] · 3H2O (H-Eno = Enoxacin), crystallizes in the triclinic system, space group P 1, with lattice parameters a = 8.7731(12), b = 9.4976(14), and c = 13.2033(19) Å, α = 86.319(7)°, β = 71.912(7)°, and γ = 80.604(7)°, V = 1031.6(3) Å3, Z = 2, D Calcd = 1.631 Mg m?3; compound 2, [Zn(H-Eno) · (H2O)2] · 2NO3, also crystallizes in the triclinic system, space group P 1, with lattice parameters a = 8.751(2), b = 9.014(2), and c = 12.594(3) Å, α = 92.277(14)°, β = 109.867(12)°, and γ = 111.469(12)°, V = 854.1(3) Å3, Z = 1, D Calcd = 1.684 Mg m?3.  相似文献   

19.
The potential surface for the boron(III) oxide (B2O3) ground state has been calculated in restricted HF approximation with a minimal STO—3G basis set. The equilibrium geometry has C2v symmetry; the corresponding structural parameters are as follows: r(Oi—B1)= 1.241 Å; r(Bi—O)= 1.341 Å ; ∠B1QB2 = 142° and ǒO1B1O = 177°. Calculations were also carried out using the SCF-Xα approach for two configurations of B2O3 with C2v and D∞h symmetry.  相似文献   

20.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号