首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A theoretical study has explored the changes brought upon the electron density of the open (C2v) and cyclic (D3h) forms of ozone by protonation. Although protonation results in a strong deformation of the electron density of ozone with notably different charge distributions for the stable forms of O3H+, the electric dipole polarizability is almost stable for the open protonated species. The polarizability of the cyclic form is less affected by protonation than that of the open one. The anisotropy of the dipole polarizability discriminates very clearly between open and closed protonated ozone. We expect the present findings to advance our understanding of the chemical reactivity of O3H+.  相似文献   

2.
A series of silver nanoparticles (NPs) embedded zinc-tellurite glass is prepared by melt-quenching technique. The transmission electron microscopic images reveal spherical as well as anisotropic silver NPs having average diameter in the range of 14–48 nm. The Er3+-free glass sample containing AgCl exhibits surface plasmon resonance (SPR) band of Ag NPs centered at ∼ 501 nm. From Judd–Ofelt analysis, it is found that by increasing the concentration of NPs, the value of Ω2 is enhanced suggesting increased covalency and decreased symmetry around the Er3+ ions. Integrated emission cross-section (IEC) is enhanced as the concentration of silver NPs is increased up to 0.5 mol% AgCl. Fourier infrared spectra show that the intensity of the vibrational band of the water molecule and fundamental stretching band of OH group are suppressed. Furthermore, under an excitation wavelength of 786 nm, three prominent upconversion emissions are observed at 520 nm, 550 nm and 650 nm which are attributed to 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 transitions, respectively. The upconversion emissions are enhanced significantly by introduction of silver NPs. The enhancement is mainly attributed to the local field effect of silver NPs. Studied nanocomposites are potential candidates for the development of solid state lasers.  相似文献   

3.
Transparent oxyfluoride glass–ceramics containing BaYF5 nanocrystals were successfully synthesized by appropriate heat-treatment on the SiO2–Al2O3–Na2O–BaF2–Y2O3–Pr6O11 precursor glass. The structure and luminescence properties of the precursor glass and glass–ceramics were investigated by DSC, XRD, TEM, optical transmission, photoluminescence, decay time and radioluminescence spectra. The XRD results indicate that the BaYF5 nanocrystals can percitated in the precursor glass and the sharper emission peaks of Pr3+ in glass ceramic suggests that Pr3+ ions are incorporated into the BaYF5 nanocrystals. The higher the heat-treatment temperature is, the more the Pr3+ ions are centered into BaYF5 nanocrystals, which results in the optimal concentration of Pr3+ in glass ceramic changes on heat-treatment temperature. It is notable that the emission intensity of both photoluminescence and radioluminescence for 0.1 mol% Pr3+ in the glass ceramic (GC665) are stronger than those in the precursor glass. The mechanism of enhanced luminescence is also discussed.  相似文献   

4.
5.
We report the infrared-to-visible frequency upconversion in Er3+–Yb3+-codoped PbO-GeO2 glass containing silver nanoparticles (NPs). The optical excitation is made with a laser at 980 nm in resonance with the 2F5/22F7/2 transition of Yb3+ ions. Intense emission bands centered at 525, 550, and 662 nm were observed corresponding to Er3+ transitions. The simultaneous influence of the Yb3+→Er3+ energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of the whole frequency upconversion spectra.  相似文献   

6.
Evidence of positive optical gain is observed in Tm3+–Yb3+-codoped oxyfluoride glass ceramic in an upconversion pump and probe experiment. The 1G4 level of the Tm3+ ions is populated by an upconversion mechanism under excitation of the Yb3+ ions at 975 nm with a high-power pulsed laser and give rise to an intense emission from the 1G4 to the 3F4 levels. The 1G43F4 electronic transition is stimulated with a low signal at 650 nm as a probe.  相似文献   

7.
8.
2.84 μm luminescence with a bandwidth of 213 nm is obtained in Dy3+ doped (ZrF4–BaF2–LaF3–AlF3–YF3) ZBLAY glass. Three intensity parameters and radiative properties have been determined from the absorption spectrum based on the Judd–Ofelt theory. The 2.84 μm emission characteristics and energy transfer mechanism upon excitation of a conventional 808 nm laser diode are investigated. The prepared Dy3+ doped ZBLAY glass possessing high predicted spontaneous transition probability (45.92 s?1) along with large calculated emission cross section (1.17×10?20 cm2) has potential applications in 2.8 μm laser.  相似文献   

9.
A novel Tm^3+/Yb^3+ triply-doped glass ceramics containing BaF2 nano-crystals are successfully prepared. Fluoride nanocrystals BaF2 are successfully precipitated in glass matrix, which is affirmed by the X-ray diffraction results. The intense blue (476 nm), green (543 nm), and red (656 nm) emissions of the glass ceramics are simultaneously observed at room temperature under 980-am excitation, and the emission luminescence intensity increases significantly compared with the precursor glass, which is attributed to the low phonon energy of fluoride nanocrystals when rare-earth ions are incorporated into the precipitated BaF2 nanocrystals. Under 980-nm excitation at 400 mW, the international commission on illumination (CIE) chromaticity coordinate (X = 0.278, Y = 0.358) of the tridoped oxyfluoride glass ceramics' upconversion emissions is close to the standard white-light illumination (X = 0.333, Y= 0.333). The results indicate that Tm^3+/Yb^3+ triply doped glass ceramics can act as suitable materials for potential three-dimensional displays applications.  相似文献   

10.
11.
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.  相似文献   

12.
13.
The energy transfer and cooperation upconversion processes are investigated in Yb3+/Er3+ codoped phos- phate glass. Based on the measured curves of output power versus incident power, the laser and spectroscopic parameters of the glass are fitted and analyzed. We focus on the resonant energy transfer constant k from Yb3+ to Er3+ as well as the cooperation upconversion coefficient Cup from 4113/2 of Era+. The fitted k and Cup can give almost the same results for different thicknesses of glass disk with the same dop- ing concentrations. The determination of these parameters is helpful for the development of Yb3+/Er3+ codoped laser glass.  相似文献   

14.
Previous experimental results, using techniques associated with transmission electron microscopy (TEM), suggested that rare‐earth dopants prefer the precipitated fluoride nanocrystals to the glass matrix. By contrast, this work shows that contradicting results can be obtained under different experimental conditions. In the silicate glass containing LaF3 nanocrystals, the Eu dopants distribute indistinguishably in the precipitated LaF3 and the silicate glass matrix. However, electron beam exposure during the measurement can relocate Eu, leading to the false conclusion that apparently Eu prefers the precipitated LaF3 nanoparticles to the glass matrix. Fortunately, the artefact can be avoided by shortening the exposure time. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The temperature of a transparent Cd0.7Sr0.3F2: Er3+(4%)–Yb3+(6%) crystalline plate 0.3 mm thick heated by a near-infrared (974 nm) laser diode and probed by a red (652 nm) laser was accurately evaluated as a function of the infrared power absorbed by the Yb3+ ions.The green emission generated by the Er3+ ions directly excited by the red laser consists of three major lines (coming from three individual Stark levels in thermal equilibrium) whose intensities were measured according to the absorbed infrared power and the distance between the heated and probed volumes, to evaluate the heating induced by the excitation of Yb3+ and Er3+ ions at 974 nm by applying the Boltzmann's equation linking the populations of emitting levels to the temperature. In the case where the Yb3+ ions excited by the laser diode are situated at a distance of about 0.5 mm from the edge of the crystal and for an absorbed infrared power of 100 mw, the crystal's edge temperature is reaching 80 °C after 20 s of continuous excitation at 974 nm.  相似文献   

16.
A nano-crystalline La2O3: Er3+/Yb3+ phosphor sample has been synthesized through the solution combustion route using urea as a reducing agent. Thermal, structural and optical characterizations have been carried out to explore several of its properties. By thermal analysis one concludes to the presence of moisture and hydroxide phases [La(OH)3 and LaOOH] of lanthanum in the as-synthesized sample, which further changes to La2O3 phase above 600°C temperature. Up-conversion (UC) study shows the intense emission bands in the UV, blue, green and red regions. This paper also reports the first observation of UC emission bands extending up to the UV (240 nm) region on excitation with 976 nm wavelength. Heat treatment of the samples shows a change in the crystallite phase along with crystallite growth and relative UC luminescence intensities. The input pump power dependence shows the involvement of up to four photons.  相似文献   

17.
Solid-state blue and green light sources are desirablefor high-density optical storage, color displays, optoelec-tronics, and medical diagnostics[1-4]. Tm3+ is the moststudied in rare-earth ions for blue laser operation basedupon upconversion[5,6]. One approach to improving theluminescence efficiency of Tm3+ is to co-dope it withother rare-earth ions[7]. The choice of host materials is avery important factor to obtain high efficient upconver-sion emission. In this case, the main goal of the c…  相似文献   

18.
The effects of Yb3+ doping on up conversion in Yb3+–Er3+ co-doped cerium oxide nanocrystals are reported. Green emission around 545 and 560 nm attributed to the 2H11/2, 4S3/24I15/2 transitions and red emission around 660 and 680 nm due to 4F9/24I15/2 transitions under 975 nm excitation were studied at room temperature. Both green and red emission intensities increase as the Yb3+ concentration increases from 0%. Emission strength starts to decrease after the Yb3+ concentration exceeds a critical amount. The green emission strength peaks around 1% Yb3+ concentration while the red emission strength peaks around 4%. An explanation of competition between different decay mechanisms is presented to account for the luminescence dependence on Yb3+ concentration. Also, the application of up converting nanoparticles in biomedical imaging is demonstrated.  相似文献   

19.
Optically transparent Er3+/Tm3+/Yb3+ tri-doped oxyfluoride tellurite based nano-crystallized glass ceramics with the batching composition of 73TeO2-15ZnO-7ZnF2-3YF3-1.5YbF3-0.3ErF3-0.2TmF3 (mol%) is prepared by a conventional melting quenching and the subsequent heat treatment processes. The sizes of grown nano-crystals in glass matrix appear to be smaller than 100 nm from the scanning electron mi- croscope measurement. Visible up-conversion luminescence of the as melted glass and glass ceramics is investigated. The three-color up-conversion luminescence intensities by 980-nm pumping are increased significantly due to the heat treatment, and the blue intensity increases with a higher magnitude than other wavelengths after heat treatment.  相似文献   

20.
This paper reports 2.0 μm emission properties of Tm3+/Ho3+ co-doped oxyfluoride tellurite glass exited by 808 nm laser diode (LD). Mid-infrared transmittance property of glass was investigated by Fourier transform infrared (FTIR) spectrometer. The real chemical composition of investigated glass was identified by X-ray photoelectric spectroscopy (XPS). Thermal stability of the glass was determined by differential thermal analysis (DTA) measurement. The Judd-Ofelt parameters, spontaneous radiative transition probabilities, branching ratios and radiative lifetime of Ho3+ were calculated based on the absorption spectra by using Judd-Ofelt theory. Results indicate that the maximum 2.0 μm emission intensity attributed to the 5I75I8 transition of Ho3+ was achieved at 1.5 mol% Tm2O3 and 1 mol% Ho2O3 concentrations in oxyfluoride tellurite glass. OH absorption at 3000 cm−1 was greatly depressed by introduction of 10 mol% F. The maximum absorption and stimulated emission cross-section of Ho3+ near 2.0 μm are 7.0×10−21 cm2 at 1950 nm and 8.8×10−21 cm2 at 2048 nm, respectively. The calculated radiative lifetime of 4.4 ms for 5I75I8 transition and large stimulated emission cross-section of the Tm3+/Ho3+ co-doped oxyfluoride tellurite glass indicate that the glass has a potential application in efficient 2.0 μm laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号