首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Whittaker studied Dirac's equation, using prequantum mathematics, and found oscillating vectors corresponding to Schrödinger'sZitterbewegung. An extension of his study, without added assumptions or speculation, reveals the speedc associated at any instant with a direction that can be defined by specification of the Dirac spinor. This direction is hidden from quantum theory because that theory violates the physical principle that coherent amplitudes of the same kind must be added before quadratic quantities are formed from them. Two-component equations are formed from Dirac's four-component equation and are found to contain information not explicit in Dirac's equation.  相似文献   

2.
We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobi's method by applying it to several equations, including a class of equations recently studied by Musielak with his own method [Z. E. Musielak, Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients J. Phys. A: Math. Theor. 41 (2008) 055205], and in particular a Liènard type nonlinear oscillator and a second-order Riccati equation. Also, we derive more than one Lagrangian for each equation.  相似文献   

3.
A rigorous proof is given of the Evans lemma of general relativity and differential geometry. The lemma is the subsidiary proposition leading to the Evans wave equation and proves that the eigenvalues of the d'Alembertian operator, acting on any differential form, are scalar curvatures. The Evans wave equation shows that the eigenvalues of the d'Alembertian operator, acting on any differential form, are eigenvalues of the index-contracted canonical energy momentum tensor T multiplied by the Einstein constant k. The lemma is a rigorous and general result in differential geometry, and the wave equation is a rigorous and general result for all radiated and matter fields in physics. The wave equation reduces to the main equations of physics in the appropriate limits, and unifies the four types of radiated fields thought to exist in nature: gravitational, electromagnetic, weak and strong.  相似文献   

4.
In this paper, the ($G′/G$)-expansion method is suggested to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential difference equation into its differential difference equation of integer order. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.  相似文献   

5.
For vacuum, typeN, twisting gravitational fields the Einstein field equations reduce to partial differential equations for two functions, one real, the other complex, which may be regarded as initial data on a localJ +. If it is assumed that in some frame these initial data take on a certain product form, one factor involving only a spatial variable, the other only a retarded time variable, then these equations become relatively tractable and reduce further to two ordinary differential equations. Rejecting all solutions which lead to Minkowski space or to zero twist leaves just two possibilities. One corresponds to the only explicitly known spacetime of the kind, namely that of Hauser. The other leads to new typeN twisting metrics. However, these metrics can be constructed explicitly only once a single nonlinear third-order ordinary differential equation has been solved.  相似文献   

6.
To model physical phenomena more accurately, fractional order differential equations have been widely used. Investigating exact solutions of the fractional differential equations have become more important because of the applications in applied mathematics, mathematical physics, and other areas. In this work, by means of the trial solution method and complete discrimination system, exact traveling wave solutions of the conformable time-fractional Zakharov–Kuznetsov equation and conformable time-fractional Zoomeron equation have been obtained and also solutions have been illustrated. Finding exact solutions of these equations that are encountered in plasma physics, nonlinear optics, fluid mechanics, and laser physics can help to understand nature of the complex phenomena.  相似文献   

7.
A numerical search for the simplest chaotic partial differential equation (PDE) suggests that the Kuramoto-Sivashinsky equation is the simplest chaotic PDE with a quadratic or cubic nonlinearity and periodic boundary conditions. We define the simplicity of an equation, enumerate all autonomous equations with a single quadratic or cubic nonlinearity that are simpler than the Kuramoto-Sivashinsky equation, and then test those equations for chaos, but none appear to be chaotic. However, the search finds several chaotic, ill-posed PDEs; the simplest of these, in the discrete approximation of finitely many, coupled ordinary differential equations (ODEs), is a strikingly simple, chaotic, circulant ODE system.  相似文献   

8.
Abstract

A fully nonlinear family of evolution equations is classified. Nine new integrable equations are found, and all of them admit a differential substitution into the Korteweg-de Vries or Krichever-Novikov equations. One of the equations contains hyperelliptic functions, but it is transformable into the Krichever-Novikov equation by a differential substitution that only involves elliptic functions.  相似文献   

9.
The purpose of the paper is to present a rigorous derivation of the relation between conservation laws and transformations leaving invariant the action integral. The (space-)time development of a physical system is represented by a cross section of a product bundleM. A Lagrange function is defined as a mapping where is the bundle space of the first jet extension ofM. A symmetry transformation is defined as a bundle automorphism ofM, carrying solutions of the Euler-Lagrange equation into solutions of the same equation. An important class of symmetry transformations is that of generalized invariant transformations: they are defined by specifying their action on the Euler-Lagrange equation. The generators of generalized invariant transformations are solutions of a system of linear, homogeneous partial differential equation (Noether equations). The set of all solutions of these equations has a natural structure of Lie algebra. In a simple manner, the Noether equations give rise to differential conservation laws.Supported by Air Force Office of Scientifie Research and Aeronautical Research Laboratories.On leave of absence from the Institute of Theoretical Physics, Warsaw University, Warsaw, Poland.  相似文献   

10.
The generalized Laplace partial differential equation, describing gravitational fields, is investigated in de Sitter spacetime from several metric approaches—such as the Riemann, Beltrami, Börner-Dürr, and Prasad metrics—and analytical solutions of the derived Riccati radial differential equations are explicitly obtained. All angular differential equations trivially have solutions given by the spherical harmonics and all radial differential equations can be written as Riccati ordinary differential equations, which analytical solutions involve hypergeometric and Bessel functions. In particular, the radial differential equations predict the behavior of the gravitational field in de Sitter and anti-de Sitter spacetimes, and can shed new light on the investigations of quasinormal modes of perturbations of electromagnetic and gravitational fields in black hole neighborhood. The discussion concerning the geometry of de Sitter and anti-de Sitter spacetimes is not complete without mentioning how the wave equation behaves on such a background. It will prove convenient to begin with a discussion of the Laplace equation on hyperbolic space, partly since this is of interest in itself and also because the wave equation can be investigated by means of an analytic continuation from the hyperbolic space. We also solve the Laplace equation associated to the Prasad metric. After introducing the so called internal and external spaces—corresponding to the symmetry groups SO(3,2) and SO(4,1) respectively—we show that both radial differential equations can be led to Riccati ordinary differential equations, which solutions are given in terms of associated Legendre functions. For the Prasad metric with the radius of the universe independent of the parametrization, the internal and external metrics are shown to be of AdS-Schwarzschild-like type, and also the radial field equations arising are shown to be equivalent to Riccati equations whose solutions can be written in terms of generalized Laguerre polynomials and hypergeometric confluent functions.  相似文献   

11.
Abstract

We study integrability of a system of nonlinear partial differential equations consisting of the nonlinear d’Alembert equation □u = F (u) and nonlinear eikonal equation u u x µ = G(u) in the complex Minkowski space R(1, 3). A method suggested makes it possible to establish necessary and sufficient compatibility conditions and construct a general solution of the d’Alembert-eikonal system for all cases when it is compatible. The results obtained can be applied, in particular, to construct principally new (non-Lie, non-similarity) solutions of the non-linear d’Alembert, Dirac, and Yang-Mills equations. Solutions found in this way are shown to correspond to conditional symmetry of the equations enumerated above. Using the said approach, we study in detail conditional symmetry of the nonlinear wave equation □w = F 0(w) in the four-dimensional Minkowski space. A number of new (non-Lie) reductions of the above equation are obtained giving rise to its new exact solutions which contain arbitrary functions.  相似文献   

12.
Milne–Pinney equation [(x)\ddot]=-w2(t)x+ k/x3\ddot x=-\omega^2(t)x+ k/{x^3} is usually studied together with the time-dependent harmonic oscillator [(y)\ddot]+w2(t) y=0\ddot y+\omega^2(t) y=0 and the system is called Ermakov system, and actually Pinney showed in a short paper that the general solution of the first equation can be written as a superposition of two solutions of the associated harmonic oscillator. A recent generalization of the concept of Lie systems for second order differential equations and the usual techniques of Lie systems will be used to study the Ermakov system. Several applications of Ermakov systems in Quantum Mechanics as the relation between Schroedinger and Milne equations or the use of Lewis–Riesenfeld invariant will be analysed from this geometric viewpoint.  相似文献   

13.
If the attenuation function of strain is expressed as a power law, the formalism of fractional calculus may be used to handle Eringen nonlocal elastic model. Aim of the present paper is to provide a mechanical interpretation to this nonlocal fractional elastic model by showing that it is equivalent to a discrete, point-spring model. A one-dimensional geometry is considered; the static, kinematic and constitutive equations are presented and the governing fractional differential equation highlighted. Two numerical procedures to solve the fractional equation are finally implemented and applied to study the strain field in a finite bar under given edge displacements.  相似文献   

14.
Nonlinear fractional differential equations are encountered in various fields of mathematics, physics, chemistry, biology, engineering and in numerous other applications. Exact solutions of these equations play a crucial role in the proper understanding of the qualitative features of many phenomena and processes in various areas of natural science. Thus, many effective and powerful methods have been established and improved. In this study, we establish exact solutions of the time fractional biological population model equation and nonlinear fractional Klein–Gordon equation by using the modified simple equation method.  相似文献   

15.
Signs of life     
Programmable electronic calculators provide a speedy means of performing scientific calculations, e.g. the evaluation of a given polynomial for many different x values and the performance of iterative procedures for the solution of polynomial equations. Both of these uses appear in variational calculations of the energy of simple quantum mechanical systems such as the perturbed harmonic oscillator. For this system the traditional perturbation method has some drawbacks, end so it is useful to find its energy levels directly by purely numerical methods. The electronic calculator can do this if the relevant Schrödinger differential equation is transformed into a difference equation. The diffusion equation is a partial differential equation, but can be converted to an ordinary differential equation and thence to a pair of difference equations which can be solved on the calculator. This applies even if the diffusion coefficient depends on the concentration, so that the associated ordinary differential equation is non-linear.  相似文献   

16.
In 1987 C. C. Dyer, G. C. McVittie, and L. M. Oattes derived the (two) field equations for shear-free, spherically symmetric perfect fluid spacetimes which admit a conformai symmetry. We use the techniques of the Lie and Painlevé analyses of differential equations to find solutions of these equations. The concept of a pseudo-partial Painlevé property is introduced for the first time which could assist in finding solutions to equations that do not possess the Painlevé property. The pseudo-partial Painlevé property throws light on the distinction between the classes of solutions found independently by P. Havas and M. Wyman. We find a solution for all values of a particular parameter for the first field equation and link it to the solution of the second equation. We indicate why we believe that the first field equation cannot be solved in general. Both techniques produce similar results and demonstrate the close relationship between the Lie and Painlevé analyses. We also show that both of the field equations of Dyeret al. may be reduced to the same Emden-Fowler equation of index two.  相似文献   

17.
In this study, the modified Kudryashov method is used to construct new exact solutions for some conformable fractional differential equations. By implementing the conformable fractional derivative and compatible fractional complex transforms, the fractional generalized reaction duffing (RD) model equation, the fractional biological population model and the fractional diffusion reaction (DR) equation with quadratic and cubic nonlinearity are discussed. As an outcome, some new exact solutions are formally established. All solutions have been verified back into its corresponding equation with the aid of maple package program. We assure that the employed method is simple and robust for the estimation of the new exact solutions, and practically capable for reducing the size of computational work for solving a various class of fractional differential equations arising in applied mathematics, mathematical physics and biology.  相似文献   

18.
The solution of the Schrödinger equation can be obtained from the one of a system of coupled differential equations generated from the potential harmonic expansion of the bound-state wave function of a system of identical particles governed by two-body central interactions. It is shown that the system of coupled equations can be transformed into an equivalent integro-differential equation. For three bosons inS states this equation is identical to the Faddeev equation as written by Noyes. The integro-differential equations describing the triton for non-central realisticN-N forces are explicitly given.Laboratoire associé au C.N.R.S.  相似文献   

19.
Integrable super nonlinear classical partial differential equations are considered. A super sl(2, R) algebra-valued connection 1-form is constructed. It is shown that the curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the Ablowitz-Kaub-Newell-Segur scheme is presented and a class of super extensions of the Lax hieararchy and super nonlinear Schrödinger equation are found. The O(N) extension and Bäcklund transformations of the above super equations are also considered.  相似文献   

20.
The problem of singularities is examined from the stand-point of a local observer. A singularity is defined as a state with an infinite proper rest mass density. The approach consists of three steps: (i) The complete system of equations describing a non-symmetric motion of a perfect fluid under assumption of adiabatic thermodynamic processes and of no release of nuclear energy is reduced to six Einstein field equations and their four first integrals for six remaining unknown componentsgik. (ii) A differential relation for the behavior of the rest mass density is deduced. It shows that any inhomogeneity and anisotropy in the distribution and motion of a non-rotating ideal fluid accelerates collapse to a singularity which will be reached in a finite proper time. Collapse is also inevitable in a rotating fluid in the case of extremely high pressure when the relativistic limit of the equation of state must be applied. In the case of a lower or zero pressure the relation does not give an unambiguous answer if the matter is rotating. (iii) The influence of rotation on the motion of an incoherent matter is investigated. Some qualitative arguments are given for a possible existence of a narrow class of singularity-free solutions of Einstein equations. Assuming rotational symmetry the Einstein partial differential equations together with their first integrals are reduced to a system of simultaneous ordinary differential equations suitable for numerical integration. Without integrating this system the existence of the class of singularity-free solutions is confirmed and exactly delimited. These solutions, representing a new general relativistic effect, are, however, of no importance for the application in cosmology or astrophysics. It is proved that in all the other cases interesting from the point of view of application the occurrence of a point singularity in incoherent matter with a rotational symmetry is inevitable even if the rotation is present.Read on 15 May 1970 at the Gwatt Seminar on the Bearings of Topology upon General Relativity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号