首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The enthalpies of solution of tetraethyl- and tetra-n-hexylammonium bromides have been measured in mixtures of formamide with ethylene glycol at 298.15 and 313.15 K in the whole mole fraction range by the calorimetric method. The standard enthalpies of solution in binary mixtures have been calculated with Redlich–Rosenfeld–Meyer type equation. The enthalpy and heat capacity parameters of pair interaction of organic electrolytes with EG in FA and with FA in EG have been computed and discussed. The enthalpy interaction parameters of single ions with EG in FA medium have been evaluated and compared with those for ion–water and ion–MeOH interaction in FA. The standard heat capacities of solution have been evaluated. The excess enthalpies of solution, Δsol H E, of Et4NBr, Bu4NBr, and Hex4NBr have been determined. The Δsol H E values are positive for Et4NBr and negative for Bu4NBr and Hex4NBr and become more negative from Bu4NBr to Hex4NBr.  相似文献   

2.
The potential energy surfaces (PES) of the reactions FeAl12 + Н2 → FeН2Al12 (1) and CoAl12 + Н2 → CoН2Al12 (2) of dissociative addition of an H2 molecule to Fe- and Co-doped aluminum clusters have been calculated by the density functional theory method. Local minima on the PES in the vicinity of low-lying isomers, intermediates, and transition states have been found, and their structural and spectroscopic characteristics and energies have been calculated. The energies of the successive stages of the catalytic cycle have been evaluated, and the channels corresponding to the minimum energy path of the reactions have been studied. Differences between the structural characteristics and energies of key structures in reactions (1) and (2) have been considered. The results are compared with previous calculations of the PES of hydrogenation reactions performed for related clusters doped with nickel and titanium atoms.  相似文献   

3.
Nonhygroscopic, colored glasses have been synthesized in the CuNbOF5-BaF2 and CuNbOF5-PbF2 systems proceeding from crystals of the complex compound CuNbOF5 · 4H2O. The glasses have been studied structurally and thermally. The crystallization resistance of the glasses has been studied as a function of glass composition. Lead difluoride glasses are more stable than barium difluoride glasses of the same composition. These glasses have lower glass-transition temperatures than the binary glasses formed in the NbO2F-BaF2 system. The glass structure is built of Nb(O,F)6 polyhedra, which are linked in glass networks through oxygen bridges. Modifier cations influence both the structure of glass networks and the linkage of polyhedra.  相似文献   

4.
The reaction of TiF4 with PhP(O)[CH2C(O)NMe2]2 in CH2Cl2 has been studied by 19F NMR spectroscopy. It has been found that the major reaction products are chelate tetrafluoro complex (η2-L)TiF4 where the ligand is coordinated to the titanium ion through the P=O and C=O groups and cis-TiF4(ОР···L)2 where both ligands are coordinated to the central ion through the more basic P=O groups. Spectral features of the tetrafluoro chelate have been studied, which have been attributed for the first time to the appearance of a chiral center at chelate coordination. The character of manifestation of conformational isomerism of the chelate ring and chiral center in the chelating ligand in mixed octahedral complexes of d0 transition metal fluorides in 19F NMR spectra is discussed.  相似文献   

5.
The binary systems NaBr-Na2MoO4 and NaBr-Na3ClMoO4 and the ternary system NaCl-NaBr-Na2MoO4 have been studied using physicochemical methods (DTA and powder X-ray diffraction). The compositions, melting points, and heats of phase transitions have been determined for three invariant points. The liquidus surface of the ternary system consists of the fields of sodium molybdate, Na3ClMoO4, and sodium chloride and bromide solid solutions. The eutectics melt at 531, 612, and 524°C; the respective heats of phase transitions are 149.27, 167.55, and 215.38 J/g.  相似文献   

6.
LiMn2O4-based spinels are of great interest as positive electrode materials for lithium ion batteries. LiCo x Mn2−x O4 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) spinel phases have been synthesized by novel citric acid-modified microwave-assisted sol–gel method. The structural properties of the synthesized products have been investigated by X-ray powder diffraction and scanning electron microscopy. To improve the recharge capacity of Li/LiCo x Mn2−x O4 cells, the electrochemical features of LiCo x Mn2−x O4 compounds have been evaluated as positive electrode materials. The structural properties of Co-doped oxides are very similar to LiMn2O4 electrode. Techniques like cyclic voltammetry, charge–discharge and cycle life are also used to characterize the LiCo x Mn2−x O4 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) electrodes.  相似文献   

7.
A new approach to the synthesis of hybrid nanoparticles based on magnetic Fe3O4 nanoparticles and CdS quantum dots, combining magnetic and luminescence properties, has been suggested. Conditions for preparation of their stable aqueous suspensions have been found, and their optical properties have been studied. Nanocomposites produced at the molar ratio Fe3O4: CdS = 5: 1, which exhibited the luminescence properties) and gave stable aqueous suspensions, have turned out to be most promising. The results are evidence that the synthesized nanoparticles can be used for the development of visualizing agents for in vitro biomedical research.  相似文献   

8.
Strontium barium niobate crystals with congruent melting composition Sr0.61Ba0.39Nb2O6 (SBN-61), both nominally pure and doped with Cr3+ и Ni3+ ions, have been investigated by neutron diffraction. Different strontium and barium contents as well as their different distribution over the Sr1, of Sr2 and Ba2 crystallographic sites of SBN-61 structure, caused by introduction of dopants, have been revealed. Coordination polyhedra of cations have been established based on the analysis of cation–anion internuclear distances together with the calculation of bond-valence sums for cations, which are equal to their formal charge. It was found that the Nb1 and Nb2 atoms are located in distorted octahedra with quadfurcated (the Nb1O6 polyhedron) or bifurcated (the Nb2O6 polyhedron) vertices, and the Sr1 atoms are located in a cuboctahedron with bifurcated vertices in the base plane. Different polyhedra have been revealed for the Sr2 and Ba2 atoms: Sr2 atoms are coordinated by 15 oxygen atoms to form a highly distorted five-capped pentagonal prism, whereas Ba2 atoms are located in a highly distorted three-capped trigonal prism with a coordination number 9. Comparison of interatomic and internuclear distances, determined by X-ray and neutron diffraction analyses, respectively, allowed to reveal a highly pronounced shift of electron density in Nb1 and Sr2 polyhedra, responsible for the covalent bond and properties of crystals. Location of Cr3+ и Ni3+ dopant ions in the SBN-61 structure as well as their formal charges has been discussed.  相似文献   

9.
A method has been developed for the determination of the structure and number of atoms in the shells of nanoparticles as a function of the arrangement of atoms at the symmetry elements of a symmetry group. The formulas for calculation of the number of particles of symmetry D 3d have been reported. It has been shown that the number of atoms in trigonal shells is determined by three structurally invariant numbers and the quantum number of the group order n. All possible nanostructures of symmetry D 3d have been classified: Cθ + 6z , z = 0, 1, 2, ..., where the basic shells are Cθ = C6, C8, and C14. A sum rule has been obtained for the coordination numbers of the shell sites located on symmetry axes. Trigonal nanoparticles are parent ones for obtaining (3,0), (6,0), and (9,0) nanotubes of trigonal type. The general formulas of these nanotubes with icosahedral, dodecahedral, and cubic caps are N8 + 12p , N20 + 24p , and N60 + 36p (p = 1, 2, ...), respectively. The graphical constructions of all classes of trigonal nanoparticles and nanotubes are reported.  相似文献   

10.
The geometrical parameters of molecular structures of three types of aluminum–iron clusters containing in total four, five, and six Al and Fe atoms in structural units have been calculated by the OPBE/TZVP density functional theory (DFT) method with the Gaussian09 program package. It has been found that the AlFe3, Al2Fe3, and Al2Fe4 clusters can have four, eight, and nine structural modifications, which significantly differ in stability and geometric parameters. Bond lengths and bond and torsion (dihedral) angles are reported for each of these modifications.  相似文献   

11.
The subsolidus region of the Li2O-MgO-B2O3 system has been studied by X-ray powder diffraction and differential thermal analysis. Isothermal sections at 500–550 and 650–700°C have been designed. The following complex borates have been found to form: at 500–550°C, Li2MgB2O5 and LiMgBO3 are formed; at 650–700°C, a new phase Li4MgB2O5 is formed along with LiMgBO3; and at 5500–600°, Li2MgB2O5 is formed.  相似文献   

12.
The molar conductivities (Λ) of solutions of n-tetrabutylammonium tetraphenylborate (NBu4BPh4) in 3-pentanone have been measured in the temperature range from 283.15 to 329.15 K. The conductance data have been analyzed using the Lee-Wheaton conductivity equation with the distance parameter (a) set at Bjerrum’s pairing distance, and the limiting molar conductivities (Λo) and the association equilibrium constants (K A) have been derived. The limiting ion conductivities (λ_±o) have been evaluated according to the method of Krumgalz. The λ+ o values have been compared with λ+ o values calculated from the empirical equation of Gill. The thermodynamic functions, Gibbs energy (Δ G A o), enthalpy (Δ H A o) and entropy (Δ S A o) for the process of ion-pair formation as well as the activation energy of the ionic movement (ΔH ) have been evaluated. The obtained results are discussed in terms of ion-ion and ion-solvent interactions.  相似文献   

13.
Phase equilibria in the Sb2Te3-Gd2Te3-Bi2Te3 ternary system have been studied using differential thermal analysis, namely, X-ray powder diffraction, microstructure examination, thermodynamic analysis, and microhardness and alloy density measurements. Phase diagrams of some polythermal joins and liquidus surface have been constructed. The regions of primary crystallization of phases and the coordinates of all invariant and univariant equilibria in the system under investigation have been established.  相似文献   

14.
Five-component reciprocal systems Na,K∥Cl,CO3,MoO4,WO4 and Na,K∥F,CO3,MO4,WO4 have been studied by differential thermal analysis (DTA) and X-ray powder diffraction (XPD). The systems have been triangulated to phase simplexes. The main reciprocal and complex-formation reactions have been revealed. The stability of [Na,K]2CO3, Na2[Mo,W]O4, and K2[Mo,W]O4 binary solid solutions and the nonexistence of quintuple invariant points in the title systems have been verified.  相似文献   

15.
The geometrical parameters of the molecular structures of aluminum–chromium and aluminum–molybdenum clusters Al2Cr3 and Al2Mo3 have been calculated by the OPBE/TZVP density functional theory (DFT) method with the Gaussian09 programL package. It has been found that each of these metal clusters can exist in twenty structural modifications, which significantly differ in stability and geometric parameters. Bond lengths and bond and torsion (dihedral) angles are reported for each of these modifications.  相似文献   

16.
As a result of solid-state reactions three cadmium vanadates(V) have been obtained, i.e. CdV2O6, Cd2V2O7 and Cd4V2O9. Melting temperature and the product of melting has been determined for Cd4V2O9. Thermal properties of the obtained cadmium vanadates(V) have been reinvestigated. The phase equilibria being established in the CdO-V2O5 system over the whole components concentration range up to the solidus line were described.  相似文献   

17.
The boundaries of tellurite glasses in the PbCl2-MoO3-TeO2 system have been determined. Glass samples have been synthesized, and their spectroscopic (IR) and electrophysical (resistance versus temperature) properties have been studied.  相似文献   

18.
TiO2 thin films have been effectively fused onto F:SnO2 (FTO) substrates via the electrodeposition method. The influence of deposition temperature on the synthesis of F:SnO2 substrates and relative information of as-deposited and annealed TiO2 thin films have been studied. Novel TiO2 microspheres are detected on F:SnO2 substrates at an optimized electrodeposition potential. Raman bands approve the creation of single-anatase-phase TiO2. The optimized deposition surroundings show a decrease in the band gap of F:SnO2 substrates and TiO2 thin films. The determined photoelectrochemical properties of annealed TiO2 thin films indicate a fill factor of 51% and power conversion efficiency of 0.15% for application in solar cells.  相似文献   

19.
The results of measurement of equilibrium constants of 30 reactions involving lanthanum and lanthanide fluorides (LnF, LnF2, and LnF3) and 14 reactions involving lanthanum and lanthanide monochlorides (Ln = La-Lu) have been summarized. These constants have been used for calculating the enthalpies of reactions by the second and third laws, from which the enthalpies of atomization Δat H 0 0 of LnCl, LnF, and LnF2 have been determined. Comparison of the calculation results shows that the thermodynamic functions of LnCl and LnF (Ln = Ce-Yb) in which the electronic excitation contribution has been calculated from the excitation energies of Ln+ ions allow one to adequately determined the Δat H 0 0 values from experimental data. Using the trends in the change in Δat H 0 0 as a function of the atomic number of a lanthanide, the enthalpies of atomization of compounds for which experimental data are lacking have been estimated. The Δat H 0 0 values for LnCl+ ions have been calculated. The reliability of the Δat H 0 0 values for LnF+ ions have been assessed.  相似文献   

20.
Stabilization of oil-in-water Pickering emulsions with SiO2 and Fe3O4 nanoparticles has been studied. Emulsions containing three-dimensional gel networks formed by aggregated nanoparticles in the dispersion media have been shown to be stable with respect to flocculation, coalescence, and creaming. Concentration ranges in which emulsions are kinetically stable have been determined. Stabilization with mixed Ludox HS-30 and Ludox CL SiO2 nanoparticles leads to the formation of stable emulsions at a weight ratio between the nanoparticles equal to 2 and pH 6.7. In the case of stabilization with Ludox CL and Fe3O4 nanoparticles, systems resistant to aggregation and sedimentation are obtained at pH 8. The use of mixed Ludox HS-30 and Fe3O4 nanoparticles has not resulted in the formation of emulsions stable with respect to creaming, with such emulsions appearing to be resistant only to coalescence at pH 2–6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号