共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal stability and reaction properties of Al-CuO system, a mixture of 50-200 nm aluminum nanoparticles passivated by nitrocellulose and 12 nm copper (II) oxide, were investigated with microstructure characterization, differential thermal analysis (DTA), and thermogravimetric analysis (TGA). Transmission electron microscopy observation confirmed that the passivation coating successfully hinders the oxidization. TGA revealed that the passivation shell does not influence the ignition temperature of the thermite reaction. Reaction chemistry of the nano-thermite was elucidated by heating the composite both in inert ambient and vacuum. It was found that the thermite reaction composes of three continuing steps: At 570 °C, Al is oxidized into Al2O3 by reacting with CuO, which forms Cu2O and produces a significant amount of heat. Subsequently two endothermic reactions occur. Starting at 800 °C, alumina reacts with Cu2O and forms CuAlO2. Above this temperature CuAlO2 will decompose and eventually produce alumina, Cu, and O2 at 1000 °C. Since the nano-thermite reaction pathway differs greatly from bulk thermite reactions, these results are important to develop a nano-thermite platform that can be used for a novel low cost, low temperature, and copper based microjoining and advance IC packaging. 相似文献
2.
Mariano Escobar Gerardo Rubiolo Roberto Candal Silvia Goyanes 《Physica B: Condensed Matter》2009,404(18):2795-2798
Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 °C) and then treated at 450 °C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 °C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 °C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 °C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25–40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts. 相似文献
3.
4.
We report the microwave-induced electrophilic addition of single-walled carbon nanotubes (SWNTs) with alkylhalides using Lewis acid as a catalyst followed by hydrolysis. The reaction results in the attachment of alkyl and hydroxyl groups to the surface of the nanotubes. This rapid and high-energy microwave radiation is found to be highly efficient for this reaction, which only needs as low as several minutes. The resulting nanotubes were characterized with FTIR, UV-vis-NIR, Raman, TGA, TEM and AFM. It demonstrates that iodo-alkanes show higher reaction activity with SWNTs than chloro- and bromo-alkanes. 相似文献
5.
Qitu Hu Zibao Gan Xiuwen Zheng Qingfu Lin Baofeng Xu Aihua Zhao Xu Zhang 《Superlattices and Microstructures》2011
Hybrid nanostructures composed of gold nanoparticles (NPs) and carbon nanotubes (CNTs) have been prepared by a microwave-assisted method in the mixed solvents of oleylamine and oleic. The morphology, structure and composition of as-obtained Au/CNT composites are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD). The composites show characteristic plasmon absorption of Au NPs in the Ultraviolet–visual spectrum. Fourier transform infrared spectrum shows the successful introduction of functional groups on the surface of CNTs, which are crucial factors to assist the nucleation in situ of Au NPs on the surface of CNTs. Electrochemical measurements show the enhancement electrochemical response for the gold electrode modified with Au/CNT composites. 相似文献
6.
This paper studies the effects of different gas compositions on the growth of multi-walled carbon nanotube (MWCNT) films by using an electron cyclotron resonance chemical vapor deposition (ECR-CVD) method. The Raman spectrum was employed to explore the composition of the MWCNT films grown under different mixtures of C3H8 and H2. The results showed that the optimum relative intensity ratio of the D band to G band (i.e., ID/IG) is 2 for the cases considered in this study. In addition, the morphology and microstructure of the MWCNTs were examined by field emission scanning electron microscopy (FE-SEM) and field emission gun transmission electron microscopy (FEG-TEM). Furthermore, atomic force microscopy (AFM) and scanning thermal microscopy (SThM) were used to study the surface topography and thermal properties of the MWCNTs. 相似文献
7.
Yuan-Li HuangHsi-Wen Tien Chen-Chi M. Ma Chih-Chun TengYi-Hsiuan Yu Shin-Yi YangMing-Hsiung Wei Sheng-Yen Wu 《Applied Surface Science》2011,258(1):136-142
In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO3) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 × 104 Ω/□ to 2.65 × 103 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment. 相似文献
8.
Jesionek M Nowak M Szperlich P Stróż D Szala J Jesionek K Rzychoń T 《Ultrasonics sonochemistry》2012,19(1):179-185
This paper presents, for the first time, the nanocrystalline, semiconducting antimony selenoiodide (SbSeI) grown in multi-walled carbon nanotubes (CNTs). It was prepared sonochemically using elemental Sb, Se, and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2.6 W/cm2) at 323 K for 3 h. The CNTs filled with SbSeI were characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction, and optical diffuse reflection spectroscopy. These investigations exhibit that the SbSeI filling the CNTs is single crystalline in nature and in the form of nanowires. It has indirect allowed energy band gap EgIf = 1.61(6) eV. 相似文献
9.
M. Nowak M. Jesionek P. Szperlich J. Szala T. Rzycho D. Str 《Ultrasonics sonochemistry》2009,16(6):800-804
This paper presents for the first time the nanocrystalline, semiconducting ferroelectrics antimony sulfoiodide (SbSI) grown in multiwalled carbon nanotubes (CNTs). It was prepared sonochemically using elemental Sb, S and I in the presence of methanol under ultrasonic irradiation (35 kHz, 2.6 W/cm2) at 323 K for 3 h. The CNTs filled with SbSI were characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction, and optical diffuse reflection spectroscopy. These investigations exhibit that the SbSI filling the CNTs is single crystalline in nature and in the form of nanowires. It has indirect forbidden energy band gap EgIf = 1.871(1) eV. 相似文献
10.
S. Pisana M. Cantoro A. Parvez S. Hofmann A.C. Ferrari J. Robertson 《Physica E: Low-dimensional Systems and Nanostructures》2007,37(1-2):1
Catalyst films undergo considerable surface morphology restructuring prior to carbon nanotube nucleation, deeply influencing the nanostructures obtained. Here we study the influence of different gaseous atmospheres on the structure of thin Fe films. The morphology is influenced by process temperature and substrate interactions and varying the gas type and pressure can control the average catalyst island height. 相似文献
11.
H. Garate A. De Falco M.S. Moreno M.L. Fascio S. Goyanes N.B. D'Accorso 《Physica B: Condensed Matter》2012,407(16):3184-3187
In this work we report the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with polyacrylonitrile (PAN) and polyvinylpyridine (PVP) by the graft from method. Differences in the electronic distribution of both polymers resulted in different interaction between polymers and the nanotubes. It was found that PVP chains wrapped the nanotubes while nanotubes functionalized with PAN presented PAN chains forming amorphous entanglements on the nanoscale linked to the MWCNTs. Differences in the conformation between both polymers and the MWCNTs can be attributed to interactions between the aromatic groups in PVP and the MWCNTs through π–π stacking. The absence of aromatic groups in the case of the PAN chains favours the interaction between them. The functionalization efficiency was characterized using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and UV–vis spectroscopy, while morphological changes were characterized by high resolution transmission electron microscopy. 相似文献
12.
Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite 总被引:2,自引:0,他引:2
M.R. Weismiller J.Y. Malchi R.A. Yetter T.J. Foley 《Proceedings of the Combustion Institute》2009,32(2):1895-1903
The pressure dependence of flame propagation in an Al/CuO nanoscale thermite was studied. Experiments were performed by loosely packing the Al/CuO mixture in an instrumented burn tube, which was placed in a large volume, constant pressure chamber with optical windows. A high-speed camera was used to take photographic data, and six pressure transducers equally spaced along the length of the burn tube were used to measure the local transient pressure. Ambient pressures were varied between 0 and 15 MPa, and three different pressurizing gases were used: argon, helium, and nitrogen. Three modes of propagation were observed. The pressure at which the mode of propagation changed was similar for argon and nitrogen, however, when pressurized with helium, transition occurred at lower pressures. In the low-pressure regime (0–2 MPa) a constant velocity mode with speeds on the order of 1000 m/s was observed. In this region, a convective mode of propagation was dominant. An accelerating regime was observed for a pressure range of approximately 2–5 MPa in argon and nitrogen, with speeds ranging from 100 to 800 m/s. In helium, however, if an accelerating region existed it occurred over a narrow pressure range which was not observed in the present experiments. An oscillating regime was observed in all three gases, in a pressure range of 5–9 MPa for argon and nitrogen, and a range of 2–4 MPa for helium. Velocities in this region are bimodal, and differ by orders of magnitude, suggesting that the propagation mechanism was oscillating between convective and conductive. At relatively high ambient pressures, a constant velocity mode with speeds on the order of 1 m/s was observed for all three gases. The conductive mode of propagation was likely dominant in this region. 相似文献
13.
Zhao-Yao ZhanYa-Ni Zhang Geng-Zhi SunLian-Xi Zheng Kin Liao 《Applied Surface Science》2011,257(17):7704-7708
An optimized strategy was developed for fast growth of millimeter-long CNT arrays using chemical vapor deposition (CVD). Growth temperature of 800 °C was firstly determined, and catalyst heat treatment conditions were then optimized to probe the full potential of growth rate. 1.5 mm long CNT arrays were obtained in 10 min under optimized growth and catalyst heat treatment conditions. The growth rate of CNT arrays strongly depends on the growth temperature and catalyst heat treatment. Insufficient reduction could not reduce iron oxide into metallic state or/and crack down catalyst film into particles, but excessive treatment may result in large particles due to Ostwald ripening process. This method would offer more freedoms in designing the fast growth of high-purity, long CNT arrays. 相似文献
14.
Ji Sun ImJumi Yun Jong Gu KimTae-Sung Bae Young-Seak Lee 《Applied Surface Science》2012,258(7):2219-2225
Glucose-sensing electrodes were constructed from carbon fibers by electrospinning and heat treatment. By controlling the pore size, the specific surface area and pore volume of the electrospun carbon fibers were increased for efficient immobilization of the glucose oxidase. Carbon nanotubes were embedded as an electrically conductive additive to improve the electrical property of the porous carbon fibers. In addition, the surface of the porous carbon fibers was modified with hydrophilic functional groups by direct oxyfluorination to increase the affinity between the hydrophobic carbon surface and the hydrophilic glucose oxidase molecules. The porosity of the carbon fibers was improved significantly with approximately 28- and 35-fold increases in the specific surface area and pore volume, respectively. The number of chemical bonds between carbon and oxygen were increased with higher oxygen content during oxyfluorination based on the X-ray photoelectron spectroscopy results. Glucose sensing was carried out by current voltagram and amperometric methods. A high-performance glucose sensor was obtained with high sensitivity and rapid response time as a result of carbon nanotube addition, physical activation and surface modification. The mechanism of the highly sensitive prepared glucose sensor was modeled by an enzyme kinetics study using the Michaelis-Menten equation. 相似文献
15.
Electron emission studies of CNTs grown on Ti and Ni containing amorphous carbon nanocomposite films
Carbon nanotubes (CNTs) were grown successfully on the as-deposited dual metal (Ti and Ni) embedded films using a radio frequency plasma-enhanced chemical vapor deposition system. The microstructure of CNTs grown on the dual metal films proved to be heavily dependent on the percentages of metals included, varying both in size and in density. Electron emission tests carried out on the films with CNTs grown showed that the threshold field was dependent on the surface morphology of the CNTs, with the lowest threshold field at 3.5 V/μm from 2.5% Ti/Ni film with CNTs. The field enhancement factor, β, of the emitting tips was also calculated from the Fowler–Nordheim plots, where CNTs from the 2.5% Ti/Ni film gave the highest field enhancement factor. However, it was observed that films with a single metal of either Ti or Ni did not manage to grow CNTs, possibly due to a lack of catalyst centres at the surface of the films. It was believed that the Ni nanoclusters acted as catalysts centres giving a rather uniform but randomly orientated type of CNTs. Results obtained pointed that the fabricated nanocomposite material could be a possible choice for cold cathode emitters and the Ti/Ni mixture could be an effective composite for controlling the CNT density. 相似文献
16.
In this research carbon nanotubes and carbon nano onion-like structures were synthesized from carbon black using metal catalysts at 400 °C and 700 °C. Platinum and iron-group metals were used as catalysts for the transformation of CB into graphitized nanocarbon and the effect of both metals was compared. The synthesized products were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM) and Raman spectroscopy. The characterization shows that this process is very efficient in the synthesis of high quality graphitized products from amorphous carbon black, even though the process temperature was relatively low in comparison with previous studies. Distinguished graphitic walls of the newly formed carbon nanostructures were clearly visible in the HRTEM images. Possible growth difference related to the type of catalyst used is briefly explained with the basis of electron vacancies in d-orbitals of metals. 相似文献
17.
18.
Hun-Sik Kim Yun Seok Chae Byung Hyun Park Jin-San Yoon Minsung Kang Hyoung-Joon Jin 《Current Applied Physics》2008,8(6):803-806
Multiwalled carbon nanotubes (MWCNTs) are considered to be the ideal reinforcing agent for high-strength polymer composites, because of their fantastic mechanical strength, high electrical and thermal conductivity and high aspect ratio. Polymer/MWCNTs composites are easily molded, and the resulting shaped plastic articles have a perfect surface appearance compared with polymer composites made using usual carbon or glass fibers. Good interfacial adhesion between the MWCNTs and the polymer matrix is essential for efficient load transfer in the composite. The ultrahigh strength polymer composites demand the uniform dispersion of the MWCNTs in the polymer matrix without their aggregation and the good miscibility between MWCNT and polymer matrix. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt-compounded with MWCNTs. A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The electrical conductivity of the composites was determined by measuring the volume resistivity, which is a value of the resistance expressed in a unit volume by two-probe method. The thermal diffusivity and heat capacity of composites was measured by laser flash method, and the effects of modification of the MWCNT in PLLA matrix are discussed. 相似文献
19.
Using molecular dynamics simulations, we investigate the oscillatory behaviors of carbon nanotube oscillators containing sp3-hybridized defects formed by hydrogen chemisorption. It is found that the presence of these defects significantly affects the kinetic and potential energies of the nanotube systems, which in turn affects their oscillation periods and frequencies. We have also studied the oscillatory characteristics of the oscillators containing sp3-hybridized Stone-Wales defects. Our results show that it is possible to control the motion of the inner nanotube by introducing sp3-hybridized defects on the outer nanotube, which provides a potential way to tune the oscillatory behavior of nanotube oscillators. 相似文献