首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical properties and the mechanism of conduction of the simultaneously substituted La0.7−xYxBa0.3Mn1−xFexO3 perovskite (0≤x≤0.30) have been studied. The insertion of Y3+ and Fe3+ ions in the parent compound La0.7Ba0.3MnO3 leads to an increase of the resistivity. The undoped sample (x=0) shows a metallic behavior, which can be fitted by the relation ρ(T)=ρ0+ρ2T2+ρ4.5T4.5, indicating the importance of electron-magnon scattering effects in this material. All the other samples (x≥0.10) are semiconductors throughout the studied temperature range (80-290 K). Several models have been used to fit their temperature-dependent resistivity: thermal activation, adiabatic nearest-neighbor hopping of small polarons (Holstein theory) and variable range hopping (VRH) models. The fits show that the electronic transport in semiconducting La0.7−xYxBa0.3Mn1−xFexO3 is well described and dominated by the VRH mechanism, for which the hopping distance (a) grows with increasing Fe3+ doping, thus increasing the average hopping energy W.  相似文献   

2.
Structural, morphological and transport properties of PrFe1? x Ni x O3 (x?=?0.1, 0.2, 0.3, 0.4 and 0.5) thin films grown on LaAlO3 substrate by pulsed laser deposition were studied experimentally. Structural analysis of the samples showed that they have in-plane compressive strain and single-phase epitaxial growth along with c-axis (001) orientation having orthorhombic structure with space group Pbnm. The observed strain is reduced with Ni substitution. The resistivity as a function of temperature follows the variable range hopping (VRH) model up to certain amount of Ni substitution (x?=?0.3) but fails for higher values of x. From the above model, parameters such as density of states at the Fermi level, N(E F), hopping energy, E h, and hopping distance R h, were calculated. Ni substitution leads to an increase in conductivity and this conduction is controlled by disorder-induced localization of charge carriers. With Ni substitution the gap parameter is found to decrease. The enhancement in conductivity and the failure of VRH model for higher doped compositions at high temperature is discussed.  相似文献   

3.
胡妮  谢卉  汪丽莉  林颖  熊锐  余祖兴  汤五丰  石兢 《物理学报》2006,55(7):3480-3487
采用常规的固相合成法分别制备了Fe3+掺杂和2/3Fe3++1/3Fe2+混合Fe离子掺杂的两组Sr14(Cu1-yFey)24O41系列样品.X射线衍射分析显示,当Fe3+离子的掺杂量y≤0.03以及2/3Fe3++1/3Fe2+混合Fe离子掺杂量y≤0.02时,样 关键词: 强关联电子系统 自旋梯状结构化合物 晶体结构 电输运性质  相似文献   

4.
The structure, electric and dielectric properties of In-substituted Mg-Cu-Mn ferrites having the general formula of Mg0.9Cu0.1Mn0.1InxFe1.9−xO4 with 0.0≤x≤0.4 have been studied. X-ray diffraction (XRD) patterns of the samples indicated the formation of single-phase cubic spinel structure up to 0.2 and mixed phase (cubic and tetragonal phase) for samples x≥0.3. The relation of conductivity with temperature revealed a semiconductor to semimetal behavior as In+3 concentration increases. Variation in the universal exponent s with temperature indicates the presence of two hopping conduction mechanisms: the correlated barrier hopping (CHB) at low In+3 content x≤0.1 and small-polaron (SP) hopping at In+3 content x≥0.2. The variation in dielectric permittivity (ε′, ε″) with temperature at different frequencies shows a normal behavior for the studied compounds, while the variation in dielectric loss tangent with frequency at different temperatures shows abnormal behavior with more than relaxation peak. The conduction mechanism used in the present study has been discussed in the light of electron exchange between Fe3+ and Fe2+ ions and hole hopping between Mn2+ and Mn3+ ions at the octahedral B-sites.  相似文献   

5.
《Current Applied Physics》2009,9(5):1072-1078
Electrical conductivity and dielectric measurements have been investigated for four different average grain sizes ranging from 3 to 7 nm of nanocrystalline Ni0.2Cd0.3Fe2.5−xAlxO4 (0.0  x  0.5) ferrites. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of the Al doped Ni–Cd ferrites. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the studied samples. The variation of impedance properties with temperature and composition has been studied in the frequency range of 120 Hz–5 MHz between the temperatures 300–473 K. The hopping of electrons between Fe3+ and Fe2+ as well as hole hopping between Ni3+ and Ni2+ ions at octahedral sites are found to be responsible for conduction mechanism. The dielectric constant and loss tangent (tan δ) are found to decrease with increasing frequency, whereas they increase with increasing temperature. The dielectric constant shows an anomalous behavior at selected frequencies, while the temperature increases, which is expected due to the generation of more electrons and holes as the temperature increases. The behavior has been explained in the light of Rezlescu model.  相似文献   

6.
《Current Applied Physics》2010,10(4):975-984
Polycrystalline nickel–zinc–copper ferrites with chemical formula Ni0.6+xZn0.2Cu0.2VxFe2−2xO4,(0.0  x  0.25) were prepared by the ceramic route. The X-ray diffraction (XRD) analysis of the samples results confirms single-phase spinel structure. Scanning electron microscopy (SEM) of the prepared ferrites reveal that vanadium addition resulted in a rapid grain growth with large pores trapped inside the grains as the vanadium concentration increases. The ac conductivity σac has been studied as a function of frequency and temperature over the temperature range (300–600 K). The results obtained for these materials reveal a semiconductor – to semimetal transition as V5+ content increases. All studies composition exhibit a transition with change in the slope of conductivity. The obtained temperature Tc is found to be decrease with the increasing vanadium content. The hopping of electrons between Fe3+ and Fe2+ as well as the hole hopping between Ni3+ and Ni2+ are found to responsible for the conduction mechanism. The relation of the universal exponent s with temperature gives evidence for the presence of the correlation barrier hopping (CHB) mechanism in these compounds. The impedance technique has been used to study effect of grain and grain boundary on the electrical properties. The analysis data show only one semi-circle for all samples except for sample with x = 0.05. The results suggested that the conduction mechanism takes place predominantly through the grain in the studied samples.  相似文献   

7.
Polarization and iron effects on the electrical properties of Pr0.67Ba0.33Mn1−xFexO3 have been studied using impedance measurements. When iron is introduced, the insulator–metal transition (MI), observed in free compound, disappears and destroying such transition needs an iron concentration less than 5%. We also found that electrical conductance decreases when increasing Fe content. Such results are attributed to the decrease of Mn3+/Mn4+ ratio. Also, they are ascribed to the high probability of encountering Fe3+–O–Fe3+ and Mn3+–O–Fe3+ interactions, which greatly weakens the influence of Mn3+–O–Mn4+ interactions. The AC conductivity studies indicate that different types of hopping are involved. The contribution of hopping mechanism is confirmed by the temperature dependence of the frequency exponent ‘s’. Conductivity analysis shows that small polaron hopping (SPH) and variable range hopping (VRH) models are present in the conduction process. For small iron concentrations (x<0.1), we found that activation energy (Ea) does not changes significantly. Such result is in good agreement with the literature. But, for high iron concentrations (x>0.1), we found that Ea depend strongly in Fe content. We also found in this work that DC-bias does not affect the conduction process but proves its thermal activation. The variation of the conductance with polarization is a proof of an electro-resistance effect.  相似文献   

8.
A series of polycrystalline La0.5Ca0.5Mn1?xNixO3 (x = 0.00, 0.025, 0.050, 0.075, 0.100 and 0.125) was synthesised using solid state reaction. Measurements in a cooling and warming cycle between 300 and 80 K were carried out to study the Ni-doping effects on the electrical resistivity, thermopower and magnetisation of single-phase La0.5Ca0.5Mn1?xNixO3. Partial substitution of Ni for Mn leads to the suppression of charge ordering state, the evidence of which is shown by the dramatic decrease in electrical resistivity and thermal hysteresis width in electrical resistivity, thermopower and magnetisation. However, the magnitude of both electrical resistivity and thermopower increases with increasing Ni content. This can be attributed to an increase in the Mn4+ concentration, which favours the antiferromagnetic state and leads to a gradual disappearance of ferromagnetic double exchange interaction. Besides, the metal–nonmetal transition temperature decreases with increasing Ni content until x = 0.075, which might arise from increased electron–phonon coupling due to less ordered spins at temperatures above ferromagnetic transition. For samples with x greater than 0.075, no metal–nonmetal transition is observed due to the suppression of double exchange mechanism.  相似文献   

9.
An investigation of the electrical conductivity of some oxyfluoride spinels of formula Znx2+Fe1?x3+[M2+ Fe3+]O4?xFx (M = Fe, Co, Ni) and Fe3+[Nx2+Fe2+Fe1?x3+]O4?xFx (N = Fe, Ni) shows that the conduction depends on the composition of the B sites: the activation energy increases, the conductivity and the Fe3O4 transition temperature decrease as the substitution rate of Fe3+ by N2+ in the B sites increases. The authors conclude to a hopping mechanism between the B cations; the anionic sublattice and the cationic A sublattice do not participate in the conduction.  相似文献   

10.
Different mixed iron-cobalt molybdates Co1−xFexMoO4 (0 < x ≤ 1) were prepared by means of a ceramic process. The influence of the isostructural substitution of Co2+ by Fe2+ and Fe3+ on the electrical conductivity of CoMoO4 was studied in the temperature range (50–600°C). The results show that the iron substitution increases the electrical conductivity and changes the conduction mechanism of CoMoO4. From a band conduction mechanism with an activation energy higher than 0.8 eV the conduction mode transforms into a hopping mechanism between the Fe2+ and Fe3+ ions in the octahedrally coordinated divalent cation sublattice. The activation energy is lower (0.4 eV) and does not alter around the polymorphic transition temperature. Owing to careful oxidations of the samples into cation deficient phases it was shown that the conductivity is proportional to the [Fe2+]/[Fe3+] ratio. These mild oxidations confirm the hopping mechanism. The presence of Co2+/Co3+ pairs has a minor contribution to the overall conductivity process. Paper presented at the 2nd Euroconference, Funchal, Madeira, Portugal, 10 – 16 Sept. 1995  相似文献   

11.
The X-ray diffraction (XRD), transmission electron microscopy, density, electrical and thermoelectric power (TEP) properties of nanocrystalline Li x V2O5 ? nH2O xerogel films (0 ≤ x ≤ 22 mol.%) were investigated. The films were produced by the sol–gel technique (colloidal route), which was used to enable high-purity, uniform preparation. The relative intensity of the (002) XRD line increased with increasing Li content. The particle size was found to be about 6.0 nm. Electrical conductivity and thermoelectric power were measured parallel to the substrate surface in the temperature range 300–480 K for the as-prepared films. The electrical conductivity showed that all the samples were semiconductors and that conductivity increased with increasing Li content. The conductivity of the present system was primarily determined by hopping carrier mobility, which was found to vary from 6.81 × 10?6 to 0.33 × 10?6 cm2 V?1 s?1 at 380 K. The carrier density was evaluated to be 8.73 × 1019–1.118 × 1021 cm?3. The conduction was confirmed to obey non-adiabatic small polaron hopping. The thermoelectric power, or Seebeck effect, increased with increasing Li content. The results obtained indicate an n-type semiconducting behavior within the temperature range investigated.  相似文献   

12.
The present work aims to investigate the pre- and post-effect of 50 MeV Li3+ ion irradiation at a fluence of 5×1013 ions/cm2 on the dielectric properties of Y3+xFe5?xO12, x=0.0, 0.2, 0.4 and 0.6, garnet system over broad temperature, 300–673 K, and frequency, 100 Hz–13 MHz, ranges. Thermal variation of ac resistivity measurements suggests that the mechanism responsible for conduction in the system is polaron hopping. The observed modifications in dielectric properties after swift heavy ion irradiation are mainly due to the modifications of the metal–insulator contacts due to radiation damage-induced disorder and irradiation-induced point/cluster of defects in the material and also compressive strain generated in the lattice structure. The electric modulus presentation and the complex impedance spectral analysis have been employed to study the relaxation process. The YFeO3 phase is found to be irradiation hard phase as compared with the garnet phase.  相似文献   

13.
The electrical resistivity of iron lead borate glasses was measured over the temperature range 300–700 K. The resistivity increases with the iron content and is a function of the Fe2+/Fetot ratio, but the minimum does not appear for 0.28 ≤ c ≤ 0.50. The samples with x > 15 mol % Fe2O3 show the presence of two activation energies for conduction. A change in the activation energy can be explained by charge transfer between iron ions in similar positions at low temperatures, and between iron ions in different positions at higher temperatures. In order to analyse the conductivity data, we have considered in all the glasses a polaronic model for conduction.  相似文献   

14.
Polycrystalline LaFe1?xNixO3 (x = 0.0, 0.1, 0.3 and 0.5) have been prepared by the standard solid state reactions method. The phase formation has been confirmed by the powerful synchrotron X-ray diffraction experiment. In order to investigate the effects of Ni doping on the oxidation state, spin state and the magnetic ordering of the iron cations, 57Fe Mössbauer Spectroscopy has been carried out at room temperature. Iron is present as Fe3+ in high spin state in LaFeO3. Ni doping has no effect on the spin state of the Fe3+ cations. However, a progressive increase in the concentration of Fe4+ cations has been inferred. Relatively stronger covalent character of the Fe4+–O?2 bond causes a progressive collapse in the magnetic ordering and delocalization of the hole states.  相似文献   

15.
The consequences of 50 MeV Li3+ ion irradiation (fluence: 5×1013 ions/cm2) on the structural and electrical properties of the Y3+xFe5?xO12 (x=0.0, 0.2, 0.4 and 0.6) garnet system have been investigated over the temperature range of 300–673 K. It is found that the percentage formation of an additional yttrium orthoferrite phase observed along with the bcc garnet phase considerably reduces for x=0.4 and 0.6 compositions after swift heavy ion (SHI) irradiation. The nature of thermal variation of DC resistivity curves for x=0.0 and 0.2 compositions is different from that for x=0.4 and 0.6 compositions. The SHI irradiation influences the magnitude of DC resistivity and conduction mechanism for the single-phase compositions while for mixed-phase compositions they remain unaffected. The results have been explained in the light of replacement of magnetic (5μB), smaller (0.64 Å), Fe3+ ion by nonmagnetic (0μB), larger (0.89 Å), Y3+ ion, the presence of the yttrium orthoferrite phase and swift heavy ion irradiation-induced paramagnetic centers in the system.  相似文献   

16.
The polycrystalline samples La0.67Ca0.33Mn(1?x)Fe x O3 (x?=?0.00,?0.01,?0.03, and 0.1) have been grown in single phase by solid state route. The analysis of the reaction has been done by thermogravimetry and differential thermal analysis measurements. DC electrical resistivity measurements have been carried out down to 15?K. The samples with x?=?0.00, 0.01, and 0.03 exhibit metal–insulator (MI) transition at temperatures 221.5?K, 217?K, and 215?K respectively, whereas the sample with x?=?0.1 is insulating in nature for entire temperature range. Interestingly, the electric transport properties of these samples are not consistent with their magnetic phase transitions and the samples show MI transition at a temperature, T MI, which is significantly lower than the paramagnetic to ferromagnetic transition temperature (T c). The resistivity data below T MI has been analyzed using the empirical relation ρ?=?ρ0?+?ρ1 T n and the data above this temperature has been analyzed using two existing models, Mott's variable range hopping model and spin polaronic conduction model.  相似文献   

17.
Thermal expansion and structural and magnetic phase transitions in alloys of the Ni–Mn–Sn system have been investigated. The spontaneous martensitic transformation in Ni51–xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is ~1.5 × 10–3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51–xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13(x = 4) alloys have been established.  相似文献   

18.
Ni–Mg ferrites, synthesized by solid-state route, were analyzed by X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy to find the distribution of Mg2+ in tetrahedral (A) and octahedral (B) sites of the spinel. In NixMg1−xFe2O4, Ni2+ enters in B site resulting in a reduction in the availability of B sites for the distribution of Mg2+ and Fe3+ and thereby influences the distribution of Mg2+. It was observed through both techniques that higher percentage of Mg2+ occupied the tetrahedral sites of Ni rich spinel systems. Thermodynamic considerations showed that entropy played significant role in the distribution of Mg2+ in NixMg1−xFe2O4, in addition the difference in site preference energy between Fe3+ and Mg2+ was too small to cause any influence.  相似文献   

19.
Manoranjan Kar  S Ravi 《Pramana》2002,58(5-6):1009-1012
Electron-doped (Ba1−x La x )MnO3 compounds were prepared for x=0−0.5. Measurements of X-ray diffraction (XRD) at room temperature and temperature variation of dc electrical resistivity down to 20 K were carried out. Samples with x=0.2–0.5 exhibit metal-insulator (M-I) transition. The maximum M-I transition temperature (T c) of 289 K was observed for 30% of La doping (x=0.3). XRD patterns of these samples (x=0.2−0.5) were analyzed using Rietveld refinement. These samples are found to be mostly in single-phase form with orthorhombic symmetry (space group Pbnm). We have found strong correlation between Mn-O-Mn bond angles and T c of M-I transition. The resistivity data below T c could be fitted to the expression ρ=ρ 1+ρ 2 T 2 and this shows that double exchange interaction plays a major role even in Mn4+-rich compound. Above T c the resistivity data were fitted to variable range hopping and small polaron models.  相似文献   

20.
吴忠浩  徐明  段文倩 《物理学报》2012,61(13):137502-137502
采用溶胶凝胶法在玻璃基片上制备了ZnO及Ni, Fe共掺杂的Zn0.95-xNi0.05FexO (x=0, 0.005, 0.01, 0.03, 0.05) 薄膜. 通过扫描电镜(SEM) 和X射线衍射(XRD) 研究了薄膜样品的表面形貌和晶体结构. 结果表明所有样品都具有(002) 择优取向, Fe掺杂导致ZnO: Ni薄膜的晶体质量变差, 晶粒尺寸减小, 但适当的Fe掺杂有利于获得致密、 均匀的薄膜. XPS测试结果表明样品中Ni离子的价态为+2价, Fe离子的价态为+2价和+3价.室温光致发光(PL) 测量表明, 所有样品均观察到较强的紫外发光峰, 蓝光双峰和绿光发光峰. ZnO: Ni薄膜的发光强度可以通过Fe掺杂进行有效调节. 进而我们讨论了Ni, Fe共掺杂ZnO样品的发光机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号