首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of an oxide coating on the strength characteristics of single-crystal silicon surface layers is investigated by the microindentation method. It is shown experimentally that a strengthened layer with a thickness of 0.2–0.4 μm and a microhardness of 20–35 GPa, which is two or three times as much as the microhardness of bulk single-crystal silicon, is present near the SiO2/Si interface. The thickness and microhardness of this layer depends on the growth conditions of the oxide. The formation of this layer is most probably caused by interstitial silicon atoms formed near the SiO2/Si interface during silicon oxidation.  相似文献   

2.
The incorporation of monoclinic zirconia nanoparticles and their subsequent transformation is examined for coatings formed on magnesium by plasma electrolytic oxidation under AC conditions in silicate electrolyte. The coatings are shown to comprise two main layers, with nanoparticles entering the coating at the coating surface and through short-circuit paths to the region of the interface between the inner and outer coating layers. Under local heating of microdischarges, the zirconia reacts with magnesium species to form Mg2Zr5O12 in the outer coating layer. Relatively little zirconium is present in the inner coating layer. In contrast, silicon species are present in both coating layers, with reduced amounts in the inner layer.  相似文献   

3.
Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm−2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na2SiO3.5H2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ∼1 μm min−1 for treatment times up to 100 min and ∼0.2 μm min−1 for later times. The coatings are composed mainly of MgO and Mg2SiO4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.  相似文献   

4.
This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three‐dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma‐enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein–Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In the present work, four processes were carried out to produce ceramic coatings on aluminum substrate in two kinds of electrolytes (silicate and phosphate solution systems) using plasma electrolytic oxidation (PEO) technology. The voltage-time responses were recorded during different PEO processes. SEM/EDX and XRD were adopted to investigate the microstructure, elements distribution and phase composition of the coatings prepared in the two electrolyte systems. It is found that coatings produced in the silicate electrolyte have a more homogeneous morphology than those produced in the phosphate system. EDX analysis shows that silicon element tends to present primarily in the outer region of the coatings while phosphorus distributes uniformly throughout the coating thickness. According to the conventional anodic oxidation mechanism, a model is set up to explain the different characteristics of ceramic coatings fabricated in different electrolytes which is helpful to understand the growth mechanism of PEO coatings.  相似文献   

6.
Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol–gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10 nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested “acceleration and smashing” mechanism as the main driving force of USAD.  相似文献   

7.
A group of electrolytes composed of different powders entered into electrolyte presents a separate direction in microarc oxidation (MAO) technology. This group of electrolytes is most complex and however it has not been sufficiently studied yet. This paper shows that addition of powders of different nature into electrolyte influences both on properties of obtained coatings and on speed of their formation. The MAO-coatings formed in similar electrolytes-suspensions or slurry electrolytes (SE) contain in their composition an essential share of powder material entered into electrolyte as corpuscles of disperse phase (DP). Different nonmetallic combinations are used: oxides, carbides, borides, nitrides of metals and others. The particular conditions of microarc discharge regime (high temperature and pressure in a zone of breakdown) cause a thermolysis of electrolyte together with weighed corpuscles of solid matter, the realization of plasma chemical reactions on oxidizing surface and provide the synthesis of chemical combinations in an oxide matrix. A new composition of slurry electrolyte which allows improving the quality of obtained coatings on the basis of held investigations was developed.  相似文献   

8.
The aim of this work is to discuss the growth characteristics of the ceramic coatings on Ti alloy by plasma electrolytic oxidation (PEO) technique. Ceramic coatings were prepared on Ti alloy by plasma electrolytic oxidation in different electrolyte solutions under different pulse modes. The composition and the structure of the coatings were investigated by X-ray diffraction and scanning electron microscopy (SEM), respectively. The amount of the dissolved titanium into the electrolytes during PEO process was measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The structure and the composition of the coatings were related to the mode of the spark discharge during PEO process. (a) Under the pulsed single-polar mode: In Na3PO4 solution, the spark discharge was mainly due to the breakdown of the oxide film, and the coatings prepared were porous and mainly structured by the Ti from the substrate. In K4ZrF6-H3PO4 and NaAlO2-Na3PO4 solutions, the main mode of the spark discharge was the breakdown of the oxide film at the initial stage, and then changed into the breakdown of the vapor envelope, and the coatings were rough and thick, and mainly structured by the elements from the electrolyte. (b) Under the pulsed bi-polar mode in NaAlO2-Na3PO4 solution, the spark discharge may be mainly due to the breakdown of the oxide film, the coatings prepared were dense in inner layer and loose in outer layer, and structured by the elements from both the substrate and the electrolyte. Besides, the ICP-AES analyses showed that the amount of the dissolved titanium in the electrolyte during PEO process was more under the breakdown of the oxide film than under the breakdown of the vapor envelope, which was consistent with the changes of the structure of the coatings. Cathode pulse in the pulsed bi-polar mode increased the amount of the dissolved titanium in the electrolyte, compared with the pulsed single-polar one.  相似文献   

9.
Multilayer nanostructured coatings consisting of alternating MoN and CrN layers were obtained by vacuum cathode evaporation under various conditions of deposition. The transition from micron sizes of bilayers to the nanometer scale in the coatings under investigation leads to an increase in hardness from 15 to 35.5 GPa (with a layer thickness of about 35 nm). At the same time, when the number of bilayers in the coating decreases, the average Vickers hardness increases from 1267 HV0.05 to 3307 HV0.05. An increase in the value of the potential supplied to the substrate from–20 to–150 V leads to the formation of growth textures in coating layers with the [100] axis, and to an increase in the intensity of reflections with increasing bilayer thickness. Elemental analysis carried out with the help of Rutherford backscattering, secondary ion mass spectrometry and energy dispersion spectra showed a good separation of the MoN and CrN layers near the surface of the coatings.  相似文献   

10.
The potential electrostatic energy of a charge near the surface of a metal with a metal or a dielectric coating (adsorbate), on the interface between metal (semimetal) and insulator (electrolyte) and in layered thin-film sandwich-type systems (MIS structures) has been calculated. The influence of the metal and the dielectric epitaxial coatings of the metal surface upon the interaction of charges is investigated. Taking into account the spatial dispersion effects, it is shown that in thin films surrounded by a medium with a large dielectric constant, the Coulomb repulsion between electrons decreases.  相似文献   

11.
Ceramic-like coatings with a thickness of up to 40 μm are formed on aluminum composites without additives and with copper additives (1 and 4.5%) in a silicate-alkaline electrolyte by microarc oxidation. The composites are prepared by powder metallurgy (cold pressing and sintering in forevacuum). An increase in the copper concentration in the composites to 4.5% leads to the retardation of anode voltage growth on the initial stage of oxidation corresponding to the formation of a barrier layer. The coatings are studied by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, and X-ray diffraction. The morphology of their surface corresponds to the morphology of the surface of coatings on compact aluminum alloys. According to X-ray photoelectron spectroscopy, a thin 1-μm layer forms on the surface. It consists predominantly of electrolyte components. X-ray diffraction analysis shows that the coatings mainly consist of γ-Al2O3 oxide as well as the η-Al2O3 phase, the peaks of which are broadened. This broadening is characteristic of the amorphous component and may be due to the presence of nanocrystalline regions in the coating structure. In the coatings on the composite Al + 4.5% Cu, mullite Al2SiO5 and copper oxide CuO are also found. The excess aluminum content may be associated with residual unoxidized aluminum inclusions in the structure of the coatings.  相似文献   

12.
The formation of solitary elastic surface pulses from laser-generated pulselike initial conditions is reported. The nonlinearity of the medium is compensated by both normal dispersion and anomalous dispersion, which were realized by coating isotropic fused silica by a metal and titanium nitride film, respectively. As an anisotropic material, silicon covered with an oxide layer was studied. The experimental results agree with numerical simulations carried out with a nonlocal evolution equation, which describes nonlinear propagation of surface acoustic waves in a dispersive medium.  相似文献   

13.
刘秀喜  王公堂 《物理学报》2008,57(1):576-580
采用高纯有机硅化合物和金属氧化物,按比例均匀混合制成糊状材料,涂敷于器件台表面,用于半导体p-n结表面特性的控制和保护.固化后该材料在室温下的体电阻率大于7.5×1015Ω·cm,介电常数为4.7,击穿电压高于16 kV/mm.该材料用于KP500型晶闸管表面保护,能明显改善器件的表面特性、减少漏电流和提高耐压水平,并对提高器件性能的机理进行了研究. 关键词: 绝缘保护材料 性能 晶闸管 机理  相似文献   

14.
Titanium oxide ceramic coatings were prepared by micro-arc oxidation (MAO) in galvanostatic regime on biomedical NiTi alloy in H3PO4 electrolyte using DC power supply. The surface of the coating exhibited a typical MAO porous and rough structure. The XPS analysis indicated that the coatings were mainly consisted of O, Ti, P, and a little amount of Ni, and the concentration of Ni was greatly reduced compared to that of the NiTi substrate. The TF-XRD analysis revealed that MAO coating was composed of amorphous titanium oxide. The coatings were tightly adhesive to the substrates with the bonding strength more than 45 MPa, which was suitable for medical applications. The curves of potentiodynamic porlarization indicated that the corrosion resistance of NiTi alloy was significantly improved due to titanium oxide formation on NiTi alloy by MAO.  相似文献   

15.
A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the chitosan films deposited using an aqueous solvent, which were removed when exposed to the ultra-high vacuum environment of XPS.  相似文献   

16.
Amorphous hydrogenated carbon doped with silicon oxide (a-C:H:Si:O), which is referred to as silicon–carbon coatings in this work, consists of thin amorphous films, which are used as commercial solid lubricants due to their higher stability under extreme environmental conditions as compared to amorphous hydrogenated carbon. The deposition of silicon–carbon coatings from the plasma of a non-self-sustained arc discharge with a heated cathode is considered. Silicon–carbon coatings are deposited using polyphenul methylsiloxane as a precursor at a flow rate of 0.05 mL/min in an argon atmosphere at a pressure of 0.1 Pa. A high-frequency power supply is used to apply a high-frequency bias voltage to a substrate during deposition. After deposition, the mechanical properties of the coatings are studied. The maximum hardness of the coating is 20 GPa at a minimum friction coefficient of 0.16 and a wear rate of 1.3 × 10–5 mm3 N–1 m–1. Energy dispersive analysis shows that the coatings contain a significant content of carbon and oxygen (about 80 and 15%, respectively) and a low content of silicon (about 5%).  相似文献   

17.
为了提高材料表面的耐磨性和高温抗氧化性,利用激光熔覆技术在Q235钢表面制备了MoFeCrTiW高熵合金涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)和磨损试验机等研究了Si,Al添加对高熵合金涂层组织、相结构、耐磨性和高温抗氧化性能的影响。结果表明:激光熔覆MoFeCrTiW高熵合金涂层组织为等轴晶,单独添加等物质的量的Si或Al时,涂层分别为共晶组织或树枝晶,同时添加等物质的量的Si和Al时,涂层组织为细小的等轴晶。各高熵合金涂层的主体相均为BCC相,随着Si,Al的添加,BCC相的晶格常数减小。添加等物质的量的Al有助于抑制涂层中金属间化合物的形成,使涂层耐磨性降低;添加等物质的量的Si则会形成含Si的金属间化合物和一些未知相,提高涂层耐磨性。激光熔覆MoFeCrTiW高熵合金涂层在800℃的抗氧化性较高,Si、Al的添加可使涂层的高温抗氧化性进一步提高。  相似文献   

18.
TiO2-based coatings were formed on titanium alloy by plasma electrolytic oxidation (PEO) in an electrolyte containing nano-HA, calcium salts and phosphates. Bioactive surface was formed after chemical treatment (NaOH aqueous solution) of the PEO coating. The surface of the PEO coating was mainly composed of Ti, O, Ca and P showing anatase and rutile; while that of the chemically treated PEO (CT-PEO) coating mainly contains Ti, O, Ca and Na showing anatase, rutile and amorphous phase. And the chemically treated surface exhibits dissolution of P and introduction of Na during the chemical treatment process. The chemical treatment has no effect on the chemical states of Ca and Ti of the PEO coating. In addition, the surface constituents of the CT-PEO coating show a uniform distribution near its surface with increasing depth. When incubated in a simulated body fluid for 7 and 14 days, the PEO coating does not exhibit apatite-forming ability; however, apatite was successfully deposited on the CT-PEO coating after 7 days probably due to the formation of hydroxyl functionalized surface, enhancing the heterogeneous nucleation of apatite. The addition of nano-HA in the electrolyte has effects on the surface character and apatite-forming ability of the PEO coating; however, it has no obvious influence on those of the CT-PEO coatings.  相似文献   

19.
Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.  相似文献   

20.
(0.1–0.3 cm2) area multipoint silicon emitters with two-layer metal–fullerene coatings are studied. Field-emission sources that generate currents of several tens of milliamperes that are sufficient for several millimeter- and submillimeter-wavelength microwave sources and compact X-ray sources are developed. Stable operation of multitip silicon field emitters with two-layer metal–fullerene coatings in high-voltage electronic devices is demonstrated at relatively high current output under technical vacuum conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号