首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have fabricated a fuel cell based on a superprotonic conductor, a Tl3H(SO4)2 crystal, and have measured the electrical properties of this fuel cell. It is found that the open-circuit voltage in the fuel cell based on the Tl3H(SO4)2 crystal increases by supplying H2 fuel gas and typically becomes 0.83 V. Moreover, we have observed that the cell voltage decreases with increasing current density, as observed in fuel cells such as proton exchange membrane fuel cell, solid oxide fuel cell, etc. These results indicate that it is possible to use the Tl3H(SO4)2 crystal as the electrolyte of a solid acid fuel cell. In addition, we suggest that the selection of the electrode and the preparation of the very thin electrolyte are extremely important to achieve high-efficiency of power generation of this fuel cell.  相似文献   

2.
The strong stimulated Raman scattering (SRS) from diesel fuel droplets has the potential of providing the relative concentration of multicomponent fuel and the absolute size of individual droplets. The morphology-dependent resonances (MDRs) of a sphere cause the droplet to act as an optical resonator which greatly lowers the SRS threshold. The number density, quality factor, and frequency shift of several MDRs are calculated as a function of the ratio of the index of refraction of the liquid and the surrounding gas, which approaches unity at the thermodynamic critical condition for the fuel spray. The SRS spectra of monodispersed droplets of toluene, pentane, Exxon-Aromatic-150, and Mobil D-2 are presented. The exponential growth region of the SRS intensity I 1S as a function of the input laser intensity I input is investigated for the toluene carbon ring breathing mode v 2 and the pentane C-H stretching region. The I 1S ratio of toluene and pentane is measured as a function of the ratio of the toluene and pentane concentration for monodispersed droplets. The reduced fluctuation in I 1S when I input is changed from multimode to single-mode is displayed as a histogram of the I 1S of the v 2 mode of toluene droplets.  相似文献   

3.
In situ visualization of the distribution and behaviour of water in a polymer electrolyte fuel cell during power generation has been demonstrated using a synchrotron X‐ray imaging technique. Images were recorded using a CCD detector combined with a scintillator (Gd2O2S:Tb) and relay lens system, which were placed at 2.0 m or 2.5 m from the fuel cell. The images were measured continuously before and during power generation, and data on cell performance was recorded. The change of water distribution during power generation was obtained from X‐ray images normalized with the initial state of the fuel cell. Compared with other techniques for visualizing the water in fuel cells, this technique enables the water distribution and behaviour in the fuel cell to be visualized during power generation with high spatial resolution. In particular, the effects of the specifications of the gas diffusion layer on the cathode side of the fuel cell on the distribution of water were efficiently identified. This is a very powerful technique for investigating the mechanism of water flow within the fuel cell and the relationship between water behaviour and cell performance.  相似文献   

4.
In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF4 and H2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CFn bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF4 and 40% of H2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells.  相似文献   

5.
Bulk heterojunction (BHJ) solar cells were fabricated based on blended films of a porphyrin derivative 5,10,15,20-Tetraphenyl-21H,23H-porphine zinc (ZnTPP) and a fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) as the active layer. The ZnTTP:PCBM BHJ solar cells were fabricated by spin-casting of the blended layer. The weight ratios of ZnTPP and PCBM were varied from 1:1 to 0:10. The electronic and optical properties of each cell were investigated. Optical density (OD) of the blended film for each cell was extracted from its reflection and transmission curves. OD and average absorption coefficients of the active materials were used to determine film thicknesses. Absorption spectra of each component material were compared with the spectra of the blended films. Current density–Voltage (JV) characteristics were recorded under dark as well as under the illumination of AM 1.5G (1 sun) solar spectrum. The BHJ solar cell with ZnTPP:PCBM ratio of 1:9 showed the best performance . The values of RR, VOC , JSC , FF and η for these ratios were 106.3, 0.4 V, 1.316 mA/cm2, 0.4 and 0.21%, respectively. The cross-section of this device using SEM was also examined.  相似文献   

6.
Polymer electrolyte membrane (PEM) fuel cells are susceptible to degradation due to the catalyst poisoning caused by CO present in the fuel above certain limits. Although the amount of CO in the fuel may be within the permissible limit, the fuel composition (% CO2, CH4, CO and H2O) and the operating conditions of the cell (level of gas humidification, cell temperature and pressure) can be such that the equilibrium CO content inside the cell may exceed the permissible limit leading to a degradation of the fuel cell performance. In this study, 50 cm2 active area PEM fuel cells were operated at 55–60 °C for periods up to 250 hours to study the effect of methane, carbon dioxide and water in the hydrogen fuel mix on the cell performance (stability of voltage and power output). Furthermore, the stability of fuel cells was also studied during operation of cells in a cyclic dead end / flow through configuration, both with and without the presence of carbon dioxide in the hydrogen stream. The presence of methane up to 10% in the hydrogen stream showed a negligible degradation in the cell performance. The presence of carbon dioxide in the hydrogen stream even at 1–2% level was found to degrade the cell performance. However, this degradation was found to disappear by bleeding only about 0.2% oxygen into the fuel stream.  相似文献   

7.
A series ofc-axis oriented YBa2Cu3O x -films with different oxygen content were prepared by laser deposition. The oxygen contentx was determined by X-ray diffraction and by resonant Rutherford-back-scattering (RRBS) measurements. Thec-axis length in these films of YBa2Cu3O x is about 0.5% larger compared to bulk values. We describe transport measurements in magnetic fields up to 7 Tesla between room temperature andT c in samples with an oxygen content between the orthorhombic-to-tetragonal transition (x6.4) and full oxygenation (x7). The ratio /R H was investigated with respect to the two-dimensional Luttinger liquid theory and the model of the two-dimensional ionic metal. We report on deviations from the expected quadratic temperature behaviour of /R H , especially in films with high oxygen content.  相似文献   

8.
Rotational coherent anti‐Stokes Raman spectroscopy (CARS) in fuel‐rich hydrocarbon flames, with a large content of hydrogen in the product gases (∼20%), has in previous work shown that evaluated temperatures are raised several tens of Kelvin by taking newly derived N2 H2 Raman line widths into account. To validate these results, in this work calibrated temperature measurements at around 300, 500 and 700 K were performed in a cell with binary gas mixtures of nitrogen and hydrogen. The temperature evaluation was made with respect to Raman line widths either from self‐broadened nitrogen only, N2 N2 [energy‐corrected‐sudden (ECS)], or by also taking nitrogen broadened by hydrogen, N2 H2 [Robert–Bonamy (RB)], Raman line widths into account. With increased amount of hydrogen in the cell at constant temperature, the evaluated CARS temperatures were clearly lowered with the use of Raman line widths from self‐broadened nitrogen only, and the case with inclusion of N2 H2 Raman line widths was more successful. The difference in evaluated temperatures between the two different sets increases approximately linearly, reaching 20 K (at T ∼ 300 K), 43 K (at T = 500 K) and 61 K (at T = 700 K) at the highest hydrogen concentration (90%). The results from this work further emphasize the importance of using adequate Raman line widths for accurate rotational CARS thermometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We have fabricated a fuel cell based on the DNA film (DNAFC) and examined its properties under various humidity conditions at room temperature. The open-circuit voltage of a DNAFC is generated by supplying H2 gas to the anode. The open-circuit voltage strongly depends on the humidity conditions, and in a DNA film, the optimum condition in which the open-circuit voltage attains a value as high as 0.55 V is achieved under the relative humidity condition of 55%. Furthermore, the cell voltage of the DNAFC decreases with an increase in current density, as observed in fuel cells such as proton exchange membrane fuel cell, solid oxide fuel cell, and several others. These results indicate that DNA film can be used as the fuel cell electrolyte under approximately 55% humidity condition.  相似文献   

10.
An extremely thin cell (ETC) with the thickness of a Rb atomic vapor layer in the range of 100–300 nm was fabricated. It is demonstrated that a simple laser-diode technique with a single resonant light beam is sufficient to observe separately all of the atomic hyperfine transitions of the D 2 line of Rb (780 nm) and also allows us to measure the relative transition probabilities of the hyperfine transitions. The onset of collisional self-broadening of the hyperfine transitions as the number density of atoms increases was studied. The detrimental role of the atoms with slow longitudinal velocity in the sub-Doppler response of the Rb ETC is demonstrated by studies in which the cell is tilted from normal incidence of the laser beam. It is also shown that using an ETC allows us to resolve in a moderate external magnetic field the Zeeman splitting of the hyperfine transitions of the 87Rb D 1 transition F g=1F e=1,2. Received: 19 February 2003 / Revised version: 4 April 2003 / Published online: 2 June 2003 RID="*" ID="*"Corresponding author. Fax: +374/32-31172, E-mail: david@ipr.sci.am  相似文献   

11.
Two batches of poly-crystalline lithium manganate were prepared by a fuel assisted solution combustion method. LiMn2O4(S) was prepared using starch as the fuel and LiMn2O4(P) was prepared using poly vinyl alcohol (PVA) as the fuel. XRD studies indicated a significant and consistent shift in the 2θ values of all the hkl peaks to higher values in LiMn2O4(P) compared to LiMn2O4(S) indicating a lattice contraction in the former. TG/DTA studies indicated a higher formation temperature (∼25 °C higher) for LiMn2O4(P). The higher formation temperature most likely promotes the oxidation of some Mn3+ to Mn4+ with a lower ionic radius causing a lattice contraction. This hypothesis is confirmed through XPS studies which indicated the presence of a higher fraction of Mn4+ in LiMn2O4(P) than that present in LiMn2O4(S). A crystal shape algorithm was used to generate the crystal habits of lithium manganate from their XRD data leading to an understanding on the exposed hkl planes in these materials. From the atomic arrangement on the exposed hkl planes it is predicted that LiMn2O4(P) would be less prone to manganese dissolution and hence would possess a higher cycle life when compared to LiMn2O4(S).  相似文献   

12.
Planar imaging with tunable excimer-laser sheet illumination is used to determine spatial distributions of different species in liquid-fuelled spray flames of commercial oil burning furnaces. Two burner configurations, which differ only in the fuel/air mixing devices, are investigated to understand why one configuration yields 30% less NOx emission. Iso-octane and n-heptane fuels are used. To understand the origin for NOx reduction spatial distributions of reactants (fuel, O2), the reaction intermediate OH and the pollutant NO are recorded. OH and O2 are measured by LIPF, NO by LIF. Fuel distributions are determined by another broad-band emission, whose origin is not yet identified. Both single shot and averaged distributions are recorded. The averaged distributions are extremely reproducible and depend sensitively on details of the burner geometry and the fuel/air mixing device. They can clearly be used to distinguish fine details in different injection systems. The spatial distribution of different species relative to each other yield considerable insight in the differences between the two combustion processes. On the basis of purely qualitative visualization it is possible to understand the origin for NOx reduction: it results from faster injection of air in the one fuel/air mixing device.  相似文献   

13.
In this study, novel glasses based on SrO–La2O3–Al2O3–B2O3–SiO2 system are investigated for solid oxide fuel and electrolyzer cells. The network structure evolution of the glasses with increasing B2O3:SiO2 ratio was studied using Raman spectroscopy. The thermal properties of the glasses, including glass transition temperature T g and glass softening temperature T d , were studied using dilatometry. The thermal stability of the glasses was investigated using X-ray diffraction. The study shows that as the B2O3:SiO2 ratio increases, the SrO–La2O3–Al2O3–B2O3–SiO2 glass micro-heterogeneity and the amount of non-bridging oxygen atoms increase. Correspondingly, the T g of the SrO–La2O3–Al2O3–B2O3–SiO2 glasses changes from 635 to 775°C, and the T d changes from 670 to 815°C. Glass thermal stability decreases with B2O3:SiO2 ratio increase. The glass without B2O3 is thermally stable after being kept at 850°C for 200 hrs.  相似文献   

14.
A highly conductive bismuth oxide/ceria bilayer electrolyte was developed to reduce solid oxide fuel cell (SOFC) operating temperatures. Bilayer electrolytes were fabricated by depositing a layer of Er0.2Bi0.8O1.5 (ESB) of varying thickness via pulsed laser deposition and dip-coating on a Sm0.2Ce0.8O1.9 (SDC) substrate. The open-circuit potential (OCP) and ionic transference number (t i) of ESB/SDC electrolytes were tested in a fuel cell arrangement as a function of relative thickness, temperature, and with H2/H2O and CO/CO2 on the anode side and air on the cathode side. These EMF measurements showed a significant increase in OCP and t i with the bilayer structure, as compared to the cells with a single SDC electrolyte layer. Furthermore, improvement in the OCP and t i of bilayer SOFCs was observed with increasing relative thickness of the ESB layers. Hence, the bilayer structure overcomes the limited thermodynamic stability of bismuth oxides and prevents electronic conductivity of ceria-based oxides in reducing atmosphere.  相似文献   

15.
An improved fuel cell cathode catalyst composition was pursued by fabricating and screening thin film combinatorial libraries. Results from the Pt-Ru, Pt-Co-Ti, Pt-Co-Cu and Pt-Co-Cr systems are reported. The discrete composition combinatorial libraries were fabricated by plasma sputtering through shadow masks. Each combinatorial library was tested by cyclic voltammetry in a multichannel electrochemical cell. Compositions were ranked based on the onset potential of the oxygen reduction reaction. Several compositions exhibited better onset potentials than pure Pt. The optimum composition from the Pt-Co-Ti system was Pt44Ti12Co44 but showed signs of corrosion after prolonged testing. A wide range of Pt-Co-Cu compositions also outperformed Pt initially, but ultimately failed due to poor corrosion resistance. Among all of the compositions that were screened, the best performance was demonstrated by Pt28Co36Cr36, with an onset potential 107 mV higher than pure Pt and no sign of corrosion.  相似文献   

16.
For the first time nanocrystalline magnetic particles of Mg x Fe(3−x)O4 with x ranging from 0.5 to 1.5 have been synthesized by a combustion reaction method using iron nitrate Fe(NO3)3.9H2O, magnesium nitrate Mg(NO3)2.6H2O, and urea CO(NH2)2 as fuel without intermediate decomposition and/or calcining steps. X-ray diffraction patterns of all systems showed broad peaks consistent with cubic inverse spinel structure of MgFe2O4. The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The mean crystallite sizes determined from the prominent (311) peak of the diffraction using Scherrer’s equation and transmission electron microscopy micrographs were c.a. 40 nm with spherical morphology. Fourier transform infrared spectra of the as-prepared material showed traces of organic and metallic salt by-products; however, these could be removed by washing with deionized water. Typical hysteresis curves were obtained for all specimens in magnetic field up to 14 T between 4 and 340 K. The saturation magnetization was 48.3 emu/g and 31.3 emu/g, 44.8 emu/g, and 28.4 emu/g for x=1.0 and 0.8 at 4 K and 340 K, respectively. The saturation magnetization, M s , of nanoparticles of the MgFe2O4 specimen is about 50% higher when compared to the bulk. The enhanced magnetization measured in our nanoparticles MgFe2O4 specimens may be attributed to the uncompensated magnetic moment of iron ions between the A- and B-sites, i.e., changes in the inversion factor. Our magnetization results of MgFe2O4 specimens are comparable to the existing data for the same compound but with different particle size and prepared by different synthesis methods.  相似文献   

17.
chemical effect on the neutral species; and (ii) a Fermi-level effect on the ionized species, because, in addition to the chemical effect, the solubility of the species also has a dependence on the semiconductor Fermi-level position. For Zn and Be in GaAs and related compounds, their diffusion process is governed by the doubly-positively-charged group III element self-interstitials (I2+ III), whose thermal equilibrium concentration, and hence also the diffusivity of Zn and Be, exhibit also a Fermi-level dependence, i.e., in proportion to p2. A heterojunction consists of a space-charge region with an electric field, in which the hole concentration is different from those in the bulk of either of the two layers forming the junction. This local hole concentration influences the local concentrations of I2+ III and of Zn- or Be-, which in turn influence the distribution of these ionized acceptor atoms. The process involves diffusion and segregation of holes, I2+ III, Zn-, or Be-, and an ionized interstitial acceptor species. The junction electric field also changes with time and position. Received: 20 August 1998/Accepted: 23 September 1998  相似文献   

18.
Methylene, CH2, is a chemically important intermediate in hydrocarbon combustion but has previously eluded optical detection in a combustion environment. The CH2 signal as a function of height above the burner surface in a premixed, laminar, methane/oxygen flame (5.6 Torr and fuel equivalence ratio 1.05) is measured by laser-induced fluorescence (LIF) in the B 1 – ã1 A 1 electronic system. The ã state which lies 3165 cm–1 above the ground state is populated at the high temperatures of the flame (800–1800 K). Although less than one photon for each laser pulse is detected, we can unambiguously attribute the LIF features in the region 450 to 650 nm to CH2 by both scanning the excitation laser and dispersing fluorescence. LIF temperatures and CH and OH LIF concentration profiles are also obtained for the flame. The CH2 radical concentration maximum occurs closer to the burner than that of either OH or CH, as expected from models of methane combustion chemistry.  相似文献   

19.
We study stable “bookshelf” smectic-A structures within a very thin plane-parallel cell of thickness L in which the mismatch between surface preferred (d s) and intrinsic (d0) smectic layer thicknesses occurs. The Landau-Ginzburg approach based on a complex smectic order parameter is used. For a weak enough smectic positional anchoring strength W smectic layers adopt the modified bookshelf profile. In a thick enough cell with increasing W a lattice of edge dislocations is continuously formed at the confining surfaces and then depinned from them. The structure with dislocations is formed when the condition d 0/( d 0/d s - 1) ∼ 2 is fulfilled, where is the positional surface anchoring extrapolation length. If the cell is thin enough the dislocations formed at opposite cell plates annihilate and consequently the smectic layers adopt a locked bookshelf structure. This transition is discontinuous and takes place when d 0/(L d 0/d s - 1) ∼ 5 is realized. To observe these transitions in a cell of thickness L∼ 1μm the conditions W∼ 10-6 J/m 2 and d 0/d s - 1∼ 5 . 10-4 have to be fulfilled. All the three qualitatively different structures coexist at the triple point. Received 21 February 2002  相似文献   

20.
The epitaxial growth of CeO2 thin films has been realized on (100) InP substrates using reactive r.f. magnetron sputtering. Oxide films were nucleated in the presence of molecular hydrogen (4% H2/Ar sputtering gas) in order to reduce the native oxide formation on the InP surface, which interferes with CeO2 epitaxy. A metal cerium target was used as the cation source, with water vapor serving as the oxidizing species. Epitaxial films were sputter-deposited at a substrate temperature of 550 °C in a H2O vapor pressure of approximately 10-3 Torr. Crystallinity of the oxide films was examined using θ–2θ X-ray diffraction, ω-rocking curves, and in-plane φ-scans. The best results were obtained when the initial nucleation layer was deposited with P(H2O)<10-5 Torr, followed by deposition at P(H2O)=10-3 Torr. The epitaxial growth of CeO2 on InP could prove enabling in efforts to integrate functional oxides with InP-based optoelectronic and microwave technologies. Received: 20 February 20002 / Accepted: 21 February 2002 / Published online: 19 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号