首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A modified theoretical model is proposed to predict the grain boundary segregation of impurity atoms during high temperature plastic deformation. The model is based on the supersaturated vacancy-impurity complex created by plastic deformation and involves quasi-thermodynamics and kinetics. Model predictions are made for phosphorus grain boundary segregation during plastic deformation in ferrite steel. The results reveal that phosphorus segregates at grain boundaries during plastic deformation. At a given te...  相似文献   

3.
陈贤淼  宋申华 《物理学报》2009,58(13):183-S188
阐述了高温塑性变形引起的非平衡晶界偏聚的准热力学和动力学,并使用该模型预测了低合金结构钢中高温塑性变形导致的P在奥氏体晶界的非平衡偏聚.研究发现:当变形为20%,应变速率为1×10-3 s-1时,在800 ℃左右会出现一个P的晶界偏聚浓度峰值;在1000 ℃变形为20%时,晶界偏聚浓度随着应变速率的增加而增加.预测结果与现有的实验结果基本一致. 关键词: 非平衡偏聚 晶界 塑性变形 磷  相似文献   

4.
This paper presents a model which quantitatively predicts grain refinement and strength/hardness of Al alloys after very high levels of cold deformation through processes including cold rolling, equal channel angular pressing (ECAP), multiple forging (MF), accumulative roll bonding (ARB) and embossing. The model deals with materials in which plastic deformation is exclusively due to dislocation movement within grains, which is in good approximation the case for many metallic alloys at low temperature, for instance aluminium alloys. In the early stages of deformation, the generated dislocations are stored in grains and contribute to overall strength. With increase in strain, excess dislocations form and/or move to new cell walls/grain boundaries and grains are refined. We examine this model using both our own data as well as the data in the literature. It is shown that grain size and strength/hardness are predicted to a good accuracy.  相似文献   

5.
A method for the determination of the components of the Frank vector of disclinations in triple junctions (TJ) of real polycrystalline aggregates has been proposed. Using this method we found that real polycrystals contain junction disclinations (JD), the nature of which is related to their thermo-mechanical history. One of the elements of the evolution of the network of initial junction disclinations is the formation of disclination dipole configurations in the adjacent TJ. The influence of the types of boundaries forming the junctions on JD Frank vector power is discussed.  相似文献   

6.
Commercial purity aluminium sheets were severely plastic deformed by accumulative roll bonding (ARB). Changes in electrical resistivity at 77 K and microstructure during the ARB process were traced up to 12 cycles, which corresponded to an equivalent strain of 10. The resistivity at 77 K increased with increasing number of ARB cycles, then saturated after about the sixth ARB cycle with a maximum increment of resistivity from starting material of about 1.1 nΩ m. Since lattice defects affect the resistivity of metals, the internal dislocation density and the density of grain boundaries were evaluated from scanning transmission electron microscopy images using Ham's method and grain boundary maps obtained from electron back-scattering diffraction, respectively. The relationship between the change in resistivity and the lattice defects is discussed.  相似文献   

7.
Electron backscattered diffraction technique was used to investigate the microstructure of aluminum particles deformed by high-energy ball milling. The lengths of different types of boundaries per area were calculated for different samples. The results show that the deformation mechanism and the rate of grain subdivision changed considerably as milling time increased. At the beginning of the milling, deformation banding subdivided grains and dynamic recovery formed a cellular structure of low angle boundaries. After further milling, particles were flattened; an increase in the aspect ratio of the original grains together with cold welding of the particles contributed to the formation of high angle grain boundaries (HAGBs). Lattice rotation progressively increased the misorientation of low and medium angle boundaries and transformed them to HAGBs, which resulted in formation of new small equiaxed grains by continuous dynamic recrystallization. This research shows subgrain rotation was the main mechanism for formation of new HAGBs.  相似文献   

8.
N.P. Gurao 《哲学杂志》2013,93(5):798-817
The large-strain deformation of nanocrystalline nickel was investigated at room temperature and cryogenic (liquid N2) temperature. Deformation mechanisms ranging from grain boundary sliding to slip, operate due to a wide distribution of grain sizes. These mechanisms leave their finger print in the deformation texture evolution during rolling of nanocrystalline nickel. The occurrence and severance of different mechanisms is understood by a thorough characterization of the deformed samples using X-ray diffraction, X-ray texture measurements, electron back-scattered diffraction and transmission electron microscopy. Crystal plasticity-based viscoplastic self-consistent simulations were used to further substantiate the experimental observations. Thus, a comprehensive understanding of deformation behavior of nanocrystalline nickel, which is characterized by simultaneous operation of dislocation-dominated and grain boundary-mediated mechanisms, has been developed.  相似文献   

9.
The role that grain boundary (GB) structure plays on the directional asymmetry of an intergranular crack (i.e. cleavage behaviour is favoured along one direction, while ductile behaviour along the other direction of the interface) was investigated using atomistic simulations for aluminium 〈1 1 0〉 symmetric tilt GBs. Middle-tension (M(T)) and Mode-I crack propagation specimens were used to evaluate the predictive capability of the Rice criterion. The stress–strain response of the GBs for the M(T) specimens highlighted the importance of the GB structure. The observed crack tip behaviour for certain GBs (Σ9 (2 2 1), Σ11 (3 3 2) and Σ33 (4 4 1)) with the M(T) specimen displayed an absence of directional asymmetry which is in disagreement with the Rice criterion. Moreover, in these GBs with the M(T) specimen, the dislocation emission from a GB source at a finite distance ahead of the crack tip was observed rather than from the crack tip, as suggested by the Rice criterion. In an attempt to understand discrepancy between the theoretical predictions and atomistic observations, the effect of boundary conditions (M(T), Mode-I and the edge crack) on the crack tip events was examined and it was concluded that the incipient plastic events observed were strongly influenced by the boundary conditions (i.e. activation of dislocation sources along the GB, in contrast to dislocation nucleation directly from the crack tip). In summary, these findings provide new insights into crack growth behaviour along GB interfaces and provide a physical basis for examining the role of the GB character on incipient event ahead of a crack tip and interface properties, as an input to higher scale models.  相似文献   

10.
徐爽  郭雅芳 《物理学报》2013,62(19):196201-196201
本文采用分子动力学方法模拟了纳米单晶铜薄膜在单向拉伸载荷作用下的塑性变形过程, 重点分析了空位型缺陷的形核过程和演化机理. 在模拟过程中, 采用镶嵌原子势描述原子间的相互作用. 模拟结果表明纳米铜薄膜中塑性变形起源于位错的表面形核, 而空位型缺陷的形核及演化都与晶体内部的位错运动密切相关. 空位型缺陷通常从位错割阶及层错交截处开始形核, 以单空位、层错四面体和不规则空位团等形式存在. 关键词: 纳米薄膜 塑性变形 空位 层错四面体  相似文献   

11.
The microstructure evolution in Fe-O alloy during mechanical ball milling is considered. It is shown that severe plastic working leads to the formation of a nanocrystalline structure. High internal stress facilitates an increase in the density of grain boundaries.  相似文献   

12.
13.
Dislocation evolution in titanium during surface severe plastic deformation   总被引:1,自引:0,他引:1  
Surface mechanical attrition treatment (SMAT) is an innovative technique which can produce nanocrystalline (nc) layers of several tens of micrometers thickness on surfaces of metallic materials. In this work, the grade structures of commercially pure titanium (CP Ti) processed by SMAT was studied intensively, and the microstructure observations indicated that the dislocation evolution could be separated into three steps: (1) formation of dislocation tangles; (2) formation of dislocation bands; and (3) dynamic recrystallization of dislocation bands until the formation of nc Ti.  相似文献   

14.
袁林  敬鹏  刘艳华  徐振海  单德彬  郭斌 《物理学报》2014,63(1):16201-016201
纳米尺度金属Ag以其独特的导电和导热性,广泛应用于微电子、光电子学、催化等领域,特别是在纳米微电极和纳米器件方面的应用.本文采用分子动力学方法模拟了不同晶粒尺寸下多晶银纳米线的拉伸变形行为,详细分析了晶粒尺寸对多晶银纳米线弹性模量、屈服强度、塑性变形机理的影响.发现当晶粒尺寸小于13.49 nm时,多晶Ag纳米线呈现软化现象,出现反Hall-Petch关系,此时的塑性变形机理主要以晶界滑移、晶粒转动为主,变形后期形成五重孪晶;当晶粒尺寸大于13.49 nm时,塑性变形以位错滑移为主,变形后期产生大量的孪晶组织.  相似文献   

15.
宋旭  陆勇俊  石明亮  赵翔  王峰会 《物理学报》2018,67(14):140201-140201
针对锂离子电池双层电极结构,建立了综合考虑锂扩散、应力、浓度影响的材料属性及集流体弹塑性变形的理论模型.基于所建立的模型,主要研究了在充电过程中集流体可能发生的塑性变形对电极中锂扩散及应力的影响.数值结果表明集流体的塑性变形会减弱其对活性层的约束,这不仅使得集流体和活性层中的应力得到明显缓解,而且还促进了锂在活性层中的扩散,提高了活性层的有效容量.与此同时,研究了集流体的屈服强度和塑性模量这两个参数的影响,结果表明,较小的屈服强度和较小的塑性模量能进一步弱化约束,松弛电极活性层中的应力,并增加其有效充电容量.研究结果为分层电极的结构设计和性能优化提供了一定的参考.  相似文献   

16.
ABSTRACT

The use of nanopolycrystalline diamond has allowed a systematic study on deformation of polycrystalline diamond composites (PCDCs). Bulk PCDCs samples containing either Co or SiC as a binding agent were deformed under high pressure and temperature to strains up to 18% at strain rates ~10?5?s?1. All samples exhibit strong work hardening. The strength of PCDCs depends on the amount and type of binding agents and is consistently weaker than that of diamond single crystals. The weakening may be due to the binder materials, which play an important role in affecting grain boundary structures. In SiC-based PCDC, significant grain fragmentation occurs. Nearly all grain boundaries are wetted by SiC after large deformation, resulting in lower strength. In Co-based PCDC, the microstructure is dominated by dislocations, deformation twins, and separated grain boundaries. The density of deformation twins increases significantly with strain, with the twin domain width reaching as low as 10–20?nm at 14% strain.  相似文献   

17.
赵雪川  刘小明  高原  庄茁 《物理学报》2010,59(9):6362-6368
本文采用分子动力学方法研究了在剪切载荷作用下,Cu(100)扭转晶界对Cu柱屈服强度的影响.模拟结果发现,在加载过程中,低角度扭转晶界形成的位错网发生位错形核与扩展,位错之间的塞积作用提高了Cu柱的屈服强度;对于高角度扭转晶界,晶界发生滑动降低了Cu柱的屈服强度.同时发现,随着扭转角度的增加,Cu柱的屈服强度先增大,当扭转角度大于临界角度时,Cu柱的屈服应力逐渐减小.这表明剪切载荷作用下,两种不同的机理主导Cu柱的屈服,对于小于临界角度的扭转晶界,Cu柱的屈服由晶界位错形核和扩展机理主导,对于大于临界角度 关键词: 扭转晶界 分子动力学 位错形核 晶界滑移  相似文献   

18.
A generalization of the Fisher model of the grain boundary diffusion is suggested, which takes into account the diffusion along short circuit diffusion paths (i.e., dislocations) in the bulk of crystalline grains. For the B-regime of the grain boundary diffusion, three different penetration modes have been found: at the short times the penetration depth of the element diffusing along the grain boundary is given by the Whipple solution of the Fisher model, but with the pipe diffusion coefficients along the dislocation cores instead of the volume diffusivities; at the intermediate times the penetration depth is a weak function of time, and at the large times the penetration depth again increases with time according to the Whipple solution, however, the rate of this increase is much smaller than in the initial period of time. The applications of the model for diffusion in nanomaterials are discussed.  相似文献   

19.
J. Wheeler 《哲学杂志》2013,93(21):2841-2864
The response of periodic microstructures to deformation can be analysed rigorously and this provides guidance in understanding more complex microstructures. When deforming by diffusion creep accompanied by sliding, irregular hexagons are shown to be anisotropic in their rheology. Analytic solutions are derived in which grain rotation is a key aspect of the deformation. If grain boundaries cannot support shear stress, the polycrystal viscosity is extremely anisotropic. There are two orthogonal directions of zero strength: sliding and rotation cooperate to allow strain parallel to these directions to be accomplished without any dissolution or plating. When a linear velocity/shear stress relationship is introduced for grain boundaries, the anisotropy is less extreme, but two weak directions still exist along which polycrystal strength is controlled only by the grain boundary “viscosity”. Irregular hexagons are characterised by four parameters. A particular subset of hexagons defined by two parameters, which includes regular hexagons as well as some elongate shapes, shows singular behaviour. Grain shapes that are close to that of the subset may exhibit large grain rotation rates and have no well-defined rheology unless there is a finite grain boundary viscosity. This new analysis explains why microstructures based on irregular but near equiaxed grains show high rotation rates during diffusion creep and it provides a framework for understanding strength anisotropy during diffusion creep.  相似文献   

20.
孙保安  汪卫华 《物理》2010,39(09):628-630
非晶合金的塑性变形机理一直是材料科学和凝聚态物理研究的热点问题之一.文章简单介绍了近来中国科学院物理研究所在非晶合金塑性机理研究方面的最新进展,介绍了玻璃转变和塑性变形机制之间的关联性及最新的实验证据,以及从非平衡态统计力学角度对非晶塑性变形机制的理解,指出非晶合金的塑性和剪切带的动力学状态密切相关,发现韧性非晶合金在变形过程中可以演化到自组织临界状态.这对认识非晶合金的形成本质,探索具有实际应用价值的非晶合金具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号