首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Ultraviolet, visible and infrared spectral measurements were used to investigate prepared undoped and rare-earth doped (2.5%) bismuth silicate glasses (80% Bi2O3–20%SiO2) before and after being subjected to gamma irradiation (8?Mrad). The base bismuth silicate glass reveals strong extended UV–near visible absorption bands which are attributed to the presence of trace iron impurities in the raw materials together with absorption due to sharing of Bi3+ ions. The RE-doped samples show the same strong UV–near visible bands as the undoped glasses beside extra narrow characteristic bands mostly in the visible and near-infrared regions due to the respective studied rare-earth ions. The base undoped and all RE-doped samples except CeO2 sample reveal quite resistance to the effect of gamma irradiation due to heavy atomic mass Bi3+ ions present in high content (80%) and the rare-earth ions are known to be weakly affected due to the known 5s, 5p shielding. The exceptional effect of CeO2-doped sample is related to the ability of Ce3+ ions to change its oxidation state through photochemical reaction by irradiation or exchange with Fe3+ present as trace iron impurities. The FT infrared spectra of the prepared glasses reveal characteristic absorption bands which are related to the silicate groups together with the sharing of vibrational modes due to Bi–O groups. The IR spectra are slightly affected by gamma irradiation indicating the stability of the structural network groups consisting of SiO4 and BiO6 units.  相似文献   

2.
Ultraviolet and visible absorption spectra of prepared undoped lithium phosphate glass and samples of the same nominal composition with additional Bi2O3 contents were measured before and after being subjected to gamma doses of 3 and 6 Mrad. The base undoped lithium phosphate glass exhibits strong charge transfer ultraviolet absorption bands, which are related to unavoidable presence of trace iron impurities within the raw materials for the preparation of this glass. Bi2O3-containing glasses show the extension of UV absorption beside the resolution of visible bands at 400, 450, and 700 nm with the increase of Bi2O3 content due the sharing of absorption of Bi3+ ions. Gamma irradiation of the base glass reveals extended induced bands; the UV bands are related to the conversion of some Fe2+ to Fe3+ through photochemical reactions during the irradiation process. The visible induced bands are related to the formation of positive hole centers from the host phosphate glass. Glasses containing Bi2O3 are observed to show some shielding behavior, which is attributed to the presence of heavy weight and large atomic number of Bi3+ ions. Infrared absorption spectral measurements of the base lithium phosphate glass show characteristic vibrational modes which are related to specific phosphate groups. The addition of Bi2O3 in measurable percent produces additional vibrational bands due to the introduction of Bi–O groups such as BiO3 and BiO6.  相似文献   

3.
The UV–Visible, Fourier transform infrared (FTIR) and Raman and electron spin resonance (ESR) spectra of undoped lead phosphate and MoO3-doped glassy samples have been investigated. The UV–VIS absorption spectra were re-measured after successive gamma irradiation. Before irradiation, undoped sample exhibited strong ultraviolet absorption, which was attributed to co-absorption due to trace iron impurities (mainly Fe3+ ions) and lead Pb2+ ions. With the introduction of MoO3 in progressive amounts, extra visible bands were recorded at about 400–440, 540, 750 and 870?nm. These bands are most likely correlated with the presence of Mo3+, Mo4+ and Mo5+ ions in the host glass. In the undoped specimen, gamma irradiation produced UV absorption bands that increased slightly with irradiation but no visible bands were recorded. Samples containing high MoO3 content showed some resistance to irradiation with no bands in the visible region being observed. FTIR absorption spectra of the undoped and MoO3-doped samples revealed the formation of metaphosphate and pyrophosphate structural units. Highly MoO3-doped samples exhibited additional bands due to molybdate groups. Raman and ESR spectra were in agreement with UV–VIS and IR data, indicating the presence of molybdenum ions in lead phosphate glass, as Mo3+, Mo4+ and Mo6+ with different ratios. However, such glassy systems favor the trivalent species.  相似文献   

4.
Ultraviolet and visible spectroscopic measurements were used to investigate prepared undoped and Mn-doped sodium phosphate glasses before and after successive gamma irradiation. The effects of both glass composition and MnO2 content on the generation of radiation-induced defects were investigated. Undoped sodium phosphate glass shows strong UV absorption, which is attributed to the presence of trace iron impurities present in the raw materials. Mn-doped glasses reveal an additional visible broad band centered at about 500 nm due to Mn3+, which has recently been related to the 5Eg5T2g transition. The radiation-induced bands are correlated with the generation of liberated electron–hole pairs during the process of gamma irradiation and the possibility of photochemical reactions especially with trace iron impurities and manganese ions. The intensity and the position of the induced bands are observed to depend on the type and composition of glass, concentration of the dopant and also on the irradiation dose. Manganese ions when present in relatively higher content have been found to show a shielding behavior towards the effects of progressive gamma irradiation causing a retardation of the growth of the induced defects. Infrared and Raman spectra of the undoped and Mn-doped glasses were measured to investigate the structural phosphate groups present and the effect of MnO2 on the network structure. An ESR investigation was carried out to confirm the state of manganese ions in the prepared sodium phosphate glasses.  相似文献   

5.
Undoped and TiO2-doped lead phosphate glasses were prepared. Ultraviolet (UV)–visible and Fourier transform-infrared (IR) absorption spectra of the prepared samples were measured before and after being subjected to doses of 30 and 60 kGy of gamma irradiation. The parent undoped lead phosphate glass reveals charge transfer UV absorption bands which are attributed to the presence of unavoidable iron impurities contaminated within the raw materials used for the preparation of the glasses and the sharing of divalent lead (Pb2+) ions. Experimental spectral data indicate that the doped titanium ions are involved in such glasses in two valences, namely the trivalent and tetravalent states. The predominant trivalent titanium (Ti3+) ions are characterized by its purple color and exhibiting two visible absorption bands at about 500–550 and 700–720 nm. The lesser tetravalent titanium (Ti4+) ions belong to the d0 configuration and generally exhibit only an UV absorption band. Spectral data show that gamma irradiation causes noticeable changes in the undoped and TiO2-doped samples in the UV range while the effects are limited in the visible range. The observed changes in the UV region are attributed to photochemical reactions while TiO2-doped samples show retardation or shielding toward continuous gamma irradiation together with the sharing of heavy Pb2+ ions. IR absorption spectra reveal the vibrations of several phosphate groups including the metaphosphate chains as the main structural building units together with the possible Pb?O vibrations.  相似文献   

6.
Undoped and CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses were prepared. UV-visible and infrared absorption spectra of the prepared samples were measured before and after successive gamma irradiation. Experimental optical spectra of the undoped samples reveal strong UV absorption bands, which are attributed to the presence of trace iron impurities in both the lithium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV bands due to combined absorption of trace iron impurities and divalent lead ions. The CuO-doped glasses reveal an extra broad visible band due to Cu2+ ions in octahedral coordination. The effects of gamma irradiation have been analyzed for both the sharing of all constituent components including trace iron impurities. Infrared absorption spectra of the prepared samples were investigated by the KBr disk technique. The FTIR spectra reveal main characteristic absorption bands due to different phosphate groups. The IR spectra are observed to be slightly affected by the increase of CuO in the doping level (0.2-3%) indicating the stability of the main network units.  相似文献   

7.
Luminescence of the Bi3+ single and dimer centers in UV and visible ranges is studied in YAG:Bi (0.13 and 0.27 at% of Bi, respectively) single crystalline films (SCFs), grown by liquid phase epitaxy from a Bi2O3 flux. The cathodoluminescence spectra, photoluminescence decays, and time-resolved spectra are measured under the excitation by accelerated electrons and synchrotron radiation with energies of 3.7 and 12 eV, respectively. The energy level structure of the Bi3+ single and dimer centers was determined. The UV luminescence of YAG:Bi SCF in the bands that peaked at 4.045 and 3.995 eV at 300 K is caused by radiative transitions of Bi3+ single and dimer centers, respectively. The excitation spectra of UV luminescence of Bi3+ single and dimer centers consist of two dominant bands, peaked at 4.7/4.315 and 5.7/6.15 eV, related to the 1S03P1 (A band) and 1S01P1 (C-band) transitions of Bi3+ ions, respectively. The excitation bands that peaked at 7.0 and 7.09 eV are ascribed to excitons bound with the Bi3+ single and dimer centers, respectively. The visible luminescence of YAG:Bi SCF presents superposition of several wide emission bands peaking within the 3.125-2.57 eV range and is ascribed to different types of excitons localized around the Bi3+ single and dimer centers. Apart from the above mentioned A and C bands the excitation spectra of visible luminescence contain wide bands at 5.25, 5.93, and 6.85 eV ascribed to the O2−→Bi3+ and Bi3+→Bi4+ + e charge transfer transition (CTT) in Bi3+ single and dimer centers. The observed significant differences in the decay kinetics of visible luminescence under excitation in A and C bands of Bi3+ ions, CTT bands, and in the exciton and interband transitions confirm the radiative decay of different types of excitons localized around Bi3+ ions in the single and dimer centers.  相似文献   

8.
Near-infrared broadband luminescence from 1100 to 1600 nm was observed in Bi2O3-GeO2 binary glasses. The strongest emission can be observed with 30 mol % Bi2O3 when pumped at 808 nm. The lifetimes of all samples are longer than 200 μs. The glass network was studied by Raman spectra and Bi+ ions are proposed as the infrared luminescence centers in this glass system. Thermal treatment in air results in partly oxidation of Bi+ to Bi2+.  相似文献   

9.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

10.
Multi-component glass ceramics composition Na2O?PbO?Bi2O3?SiO2 doped with different concentrations of Fe2O3 as nucleating agent were characterised by XRD, SEM (scanning electron microscope) and DTA (differential thermal analysis) techniques. Optical absorption, EPR, FTIR and Raman studies are also carried out on these glass ceramics. Absorption bands observed at about 457, 489, 678 and 820 nm are the characteristics of Fe3+ ions whereas the band observed at about 964 nm is due to Fe2+ ions. EPR studies suggested that Fe3+ ions entered in the lattice as tetragonally distorted octahedral symmetry or rhombic sites at low concentration of Fe2O3, whereas at higher concentration of Fe2O3 (beyond 1 mol%), the super exchange type of interactions between multivalency iron ions begin to dominate. FTIR and Raman spectra have revealed the behaviour of various structural units in the glass ceramic matrix. The analysis of these spectroscopic studies indicates that iron ions do exist in Fe3+ and Fe2+ state.  相似文献   

11.
罗彩香  夏海平  虞灿  徐军 《物理学报》2011,60(7):77806-077806
用坩埚下降法(Bridgman)生长出了Bi离子掺杂的CdWO4单晶.测定了晶体不同部位的吸收光谱、发射光谱和X射线电子能谱(XPS).Bi离子的掺入引起CdWO4晶体的吸收边从345 nm红移到399 nm.在311 nm, 373 nm,808 nm和980 nm光的激发下,分别观测到中心波长为470 nm,528 nm,1078 nm和较弱的1504 nm四个不同发射带.Bi:CdWO4单晶的XPS谱分别与Bi2 关键词: Bi离子 荧光光谱 X射线电子能谱 4单晶')" href="#">CdWO4单晶  相似文献   

12.
Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ powders were prepared by a combustion method. Their structures were determined using X-ray diffraction. UV-visible absorption and photoluminescence spectra were investigated for Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ at different annealing temperatures and different doping concentrations. The emission spectra of all samples presented the characteristic emission narrow lines arising from the 4G5/26HJ transitions (J=5/2, 7/2, and 9/2) of Sm3+ ions upon excitation with UV irradiation. The emission intensity of Sm3+ ions was largely enhanced with introducing Bi3+ ions into Gd2O3:Sm3+ and the maximum occurred at a Bi3+ concentration of 0.5 mol%. The relevant mechanisms were discussed with the sensitization theory by Dexter and the aggregation behavior of Bi3+ ions.  相似文献   

13.
The Yb-doped Bi2O3–GeO2 glasses were prepared by the conventional melt quenching technique. Near-infrared (NIR) broadband emission was found at about 1024 nm, and 1330 nm (under 785 nm excitation), and the measured fluorescent lifetime was about several hundred microseconds. The emission intensity of Yb-doped Bi2O3–GeO2 glasses increased with increasing of Yb dopant in our experiments. The NIR emission should be related to Yb3+ and lower valence Bi ions.  相似文献   

14.
Bi2O3 doped 65SiO2–20Al2O3–15La2O3 (in mole%) glasses were prepared by the traditional melting–quenching method. The spectroscopic properties and mechanism of NIR broadband emission in these glasses were investigated in this work. Three excitation wavelengths of 500, 700 and 800 nm were used to test emission spectra. The emission band under 500 nm excitation can be regarded as combination of emission bands under 700 and 800 nm excitation. 2.0 mole% is found to be the optimal Bi2O3 doping level in this glass. Under 500 nm excitation its emission peak, FWHM and lifetime of emission band are 1160 nm, 300 nm and 569 μs, respectively. The longest fluorescent lifetime reaches 620 μs under 700 nm excitation. The valence state of Bi in these glasses is suggested to be lower than +3 by X-ray photoelectron spectroscopy. With the help of energy matching, we infer that both Bi0 and Bi+ centers are responsible for the NIR fluorescence of Bi2O3 doped 65SiO2–20Al2O3–15La2O3 glass.  相似文献   

15.
Bi4???x M x V2O11???δ (M?=?La, Gd; 0.1?≤?x?≤?0.3) is synthesised by a solid state reaction method to study the effect of La3+ and Gd3+ substitution for Bi on the structural and optical properties. The as-prepared samples are characterised by X-ray diffraction, Fourier transform infrared analysis, UV–visible spectroscopy, scanning electron microscopy and energy-dispersive spectroscopy. The refinement results confirmed that even substituted samples exhibit monoclinic structure with space group C2/m. The parameters like band gap energy; Urbach energy has been calculated from the UV–visible spectra. It has been observed that even substitution at the bismuth site by isovalent cations decreases the energy band gap. The lowest observed band gap is 1.86 eV for Bi3.9La0.1V2O11???δ . The grain size and defects were observed to increase with increasing substitution along with the amount of secondary phase.  相似文献   

16.
玻璃的最大声子能量决定稀土离子的上转换发光强度,但本研究发现:Yb3+/Er 3+共掺锗碲酸盐玻璃在980nm LD抽运下,上转换荧光强度随着Bi2O 3对PbO的取代和碱 金属离子半径的增大而明显增强.而Raman光谱显示基质玻璃的最大声子能量并不随Bi 2O3对PbO的取代和碱金属离子半径的增大而变化,但玻璃的最大声子密 度随着Bi2O3对PbO 取代和碱金属离子半径的增大而降低.从玻璃无辐射跃迁概率的角度,通过分析表明,最大 声子密度的降低是玻璃上转换发光强度增强的主要原因.  相似文献   

17.
王森  周亚训  戴世勋  王训四  沈祥  陈飞飞  徐星辰 《物理学报》2012,61(10):107802-107802
采用高温熔融退火法制备了系列 80TeO2-10Bi2O3-10TiO2-0.5Er2O3-xCe2O3 (x=0,0.25, 0.5,0.75,1.0 mol%)和(80-y) TeO2-10Bi2O3-10TiO2-yWO3-0.5Er2O3-0.75Ce2O3 (y=3,6,9,12 mol%)的碲铋酸盐玻璃.测试了玻璃样品400-1700 nm范围内的吸收光谱, 975 nm抽运下的上转换发光谱和1.53 μm波段荧光谱, 以及808 nm激励下的Er3+离子荧光寿命和无掺杂玻璃样品的Raman光谱, 并结合Judd-Ofelt理论和McCumber理论计算了Er3+离子光谱参数.结果表明, 在掺Er3+碲铋酸盐玻璃中引入Ce3+离子进行Er3+/Ce3+共掺, 通过Er3+离子4I11/2能级与Ce3+离子2F5/2 能级间基于声子辅助的能量传递过程,可以有效抑制Er3+离子上转换发光并明显增强其 1.53 μm波段荧光;同时,在现有Er3+/Ce3+共掺玻璃组分基础上引入WO3, 可进一步提高1.53 μm波段荧光并展宽其荧光发射谱. 研究结果对于获取优异光谱特性的宽带掺Er3+光纤放大器玻璃基质具有实际意义.  相似文献   

18.
Mössbauer spectra and electrical conductivities were measured for the purpose of studying on the conduction mechanism of xFe2O3?(40-x)V2O5?60P2O5 glasses. The ratios Fe2+/Fe2++Fe3+ in xFe2O3?(40-x)V2O5?60P2O5 glasses were determined by Mössbauer spectroscopy. On the composition dependence of D. C. conductivities in these glasses, the minimum of log σ at each temperature was obtained at 25Fe2O3?15V2O5?60P2O5. The conductivities of ternary glassses in Fe rich region could be explained only by the changes of carrler (Fe2+) concentration and the hopping conduction between Fe2+ ions and Fe3+ ions in binary glasses. In V rich region, the saturation tendency of D. C. conductivities are observed. It was suggested to be explained by increasing of V4+ ions due to the influence of Fe ions.  相似文献   

19.
The electronic structures and absorption spectra for both the perfect PbWO4 (PWO) crystal and the three types of PWO crystals, containing VPb2−, VO2+ and a pair of VPb2−-VO2+, respectively, have been calculated using CASTEP codes with the lattice structure optimized. The calculated absorption spectra indicate that the perfect PWO crystal does not occur absorption band in the visible and near-ultraviolet region. The absorption spectra of the PWO crystal containing VPb2− exhibit seven peaks located at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), respectively. The absorption spectra of the PWO crystal containing VO2+ occur two peaks located at 370 nm and 420 nm. The PWO crystal containing a pair of VPb2−-VO2+ does not occur absorption band in the visible and near-ultraviolet region. This leads to the conclusions that the 370 and 420 nm absorption bands are related to the existence of both VPb2− and VO2+ in the PWO crystal and the other absorption bands are related to the existence of the VPb2− in the PWO crystal. The existence of the pair of VPb2−-VO2+ has no visible effects on the optical properties. The calculated polarized optical properties are well consistent with the experimental results.  相似文献   

20.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号