首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Structural features of layered boride YbAlB4 single crystals with YCrB4-type (α-type) and ThMoB4-type (β-type) phases derived from a hexagonal AlB2-type structure were investigated by electron diffraction, high-resolution electron microscopy and X-ray diffraction. X-ray diffraction experiments indicate the existence of some structural motifs. High-resolution images clearly show that the structural motifs build the intergrown lamellar structures in the matrix. The lamellar structures can be characterized by a coherent tiling of deformed Yb hexagons, which are a common structure unit in the α- and β-type structures. The characteristic intergrown nanostructure is similar to that observed in the β-type TmAlB4 polycrystalline sample.  相似文献   

2.
K. Yu-Zhang  K. Han  A. Misra 《哲学杂志》2013,93(17):2559-2567
Multilayers of Cu–Nb have been grown on a Nb seed layer on a Si (100) substrate using a magnetron sputtering technique. The bilayer period (Λ) was varied from 10 to 2.4 nm. Cross-sectional transmission electron microscopy (XTEM) and high-resolution TEM (HRTEM) were used to study the detailed structure as a function of the bilayer period. Although the majority of the structures conformed to a Kurdjumov–Sachs (K–S) orientation relationship between the Cu and Nb layers, the structures exhibit considerable spatial variation. In some local regions, a Nishiyama–Wasserman (N–W) orientation relationship was found. In addition, considerable distortions were observed in both the Cu and Nb regions close to the interface. Using both HRTEM imaging and fast Fourier transform (FFT) of HRTEM images, early stage of the fcc to bcc transition in Cu was detected. The results suggest that, in multilayer structures, the detailed structure of the interface and large local distortions may play an important role in interface-controlled plasticity.  相似文献   

3.
4.
Abstract

The role of Ni addition in Cu on the growth of intermetallic compounds in the Cu–Sn system is studied based on microstructure, crystal structure and quantitative diffusion analysis. The diffraction pattern analysis of intermetallic compounds indicates that the presence of Ni does not change their crystal structure. However, it strongly affects the microstructural evolution and diffusion rates of components. The growth rate of (Cu,Ni)3Sn decreases without changing the diffusion coefficient because of the increase in growth rate of (Cu,Ni)6Sn5. For 3 at.% or higher Ni addition in Cu, only the (Cu,Ni)6Sn5 phase grows in the interdiffusion zone. The elongated grains of (Cu,Ni)6Sn5 are found when it is grown from (Cu,Ni)3Sn. This indicates that the newly formed intermetallic compound joins with the existing grains of the phase. On the other hand, smaller grains are found when this phase grows directly from Cu in the absence of (Cu,Ni)3Sn indicating the ease of repeated nucleation. Grain size of (Cu,Ni)6Sn5 decreases with further increase in Ni content, which indicates a further reduction of activation barrier for nucleation. The relations for the estimation of relevant diffusion parameters are established considering the diffusion mechanism in the Cu(Ni)–Sn system, which is otherwise impossible in the phases with narrow homogeneity range in a ternary system. The flux of Sn increases, whereas the flux of Cu decreases drastically with the addition of very small amount of Ni, such as 0.5 at.% Ni, in Cu. Analysis of the atomic mechanism of diffusion indicates the contribution from both lattice and grain boundary for the growth of (Cu,Ni)6Sn5 phase.  相似文献   

5.
The magnetic interactions between the nanograins in heterogeneous granular Cu–(SmCo5)–Fe ribbons were evaluated with a classical mean field model to obtain the exchange coupling as well as the magnetic moment per nanoparticle. The samples were subjected to various thermal treatments and a significant magnetoresistive effect was obtained when the optimal annealing conditions had been achieved.  相似文献   

6.
7.
Ribbons of Fe100−xGax (x=15, 17.5, 19.5 and 22.5) were prepared by rapid solidification from the melt. 57Fe Mössbauer spectroscopy and high resolution neutron diffraction have revealed that Fe100−xGax alloys with x=15 and 17.5 have the disordered bcc (A2) structure even after annealing, but the alloy with x=19.5 developed the short-range ordered D03 phase when annealed. The x=22.5 alloys showed mainly D03 phase with a fraction of bcc phase. A fraction of the bcc phase transformed into D03 phase and the long-range ordering of D03 phase was improved after annealing. 57Fe Mössbauer spectra showed no observable L12 phase in any samples even though less than 1% volume of L12 phases has been found in the annealed samples by neutron diffraction. The additional absorption at hyperfine field of 25 T in x=22.5 samples was regarded as a result of imperfect D03 structure, rather than L12 phase.  相似文献   

8.
The detailed microstructures of Ni80Fe20/Fe50Mn50 superlattices have been characterized using both x-ray diffraction techniques and transmission electron microscopy.The obrivous layered structure,typical column structure and twins which exist in Ni80Fe20/Fe50Mn50 superlattices were observed through performing transmission microscopy.By combining the technique of lowangle x-ray reflectivity(specular and off-specular scans)with the anomalous scattering effect and high-angle x-ray diffraction(using conventional x-ray),wequantitatively analysed the microstructural variation as a function of annealing temperature.It is found that the lateral correlation length,the(111)peak intensity of the superlattices and the average multilayer coherence length all increase with a rise in annealing temperature annealing can decrease the rootmean-square roughness at the interfaces of Ni80Fe20/Fe50Mn50 superlattices.the obtained microstructural knowledge will be helpful in understanding the magnetic properties of the ni80Fe20/Fe50Mn50 exchange bias system.  相似文献   

9.
The paper deals with the applicability of Mössbauer spectroscopy and X-ray diffraction methods for the determination of the deviation of magnetite from stoichiometry. The results show that among the data obtainable by both methods, the ratio of intensities of two partial spectra composing the Mössbauer spectrum of magnetite enables to evaluate the deviation of magnetite from stoichiometry quantitatively.The authors express their gratitude to Prof. Dr. Ing. J.Cirák who enabled them to perform all measurements of Mössbauer spectra at the Department of Nuclear Physics and Technics, Slovak Technical University, Bratislava. The authors are also indebted to Ing. P.Holba (Institute of Solid State Physics, Czechoslovak Academy of Sciences) and to Ing. Z.Drbálek (Research Institute of Sound and Picture) for the preparation of magnetite samples, and to Mr. P.Chaloupek (Faculty of Mathematics and Physics, Charles University, Praha) for computer calculation of lattice constants. The aid provided by members of the G. V. Akimov State Research Institute for the Protection of Materials, Dipl. Chem. K.Jendelová who carried out chemical analysis of the samples and Ing. K.Turecká who took part in X-ray diffraction measurements, is gratefully acknowledged.  相似文献   

10.
Disks of pure Cu and several Cu–Al alloys were processed by high-pressure torsion (HPT) at room temperature through different numbers of turns to systematically investigate the influence of the stacking fault energy (SFE) on the evolution of microstructural homogeneity. The results show there is initially an inhomogeneous microhardness distribution but this inhomogneity decreases with increasing numbers of turns and the saturation microhardness increases with increasing Al concentration. Uniform microstructures are more readily achieved in materials with high or low SFE than in materials with medium SFE, because there are different mechanisms governing the microstructural evolution. Specifically, recovery processes are dominant in high or medium SFE materials, whereas twin fragmentation is dominant in materials having low SFE. The limiting minimum grain size (d min) of metals processed by HPT decreases with decreasing SFE and there is additional evidence suggesting that the dependence of d min on the SFE decreases when the severity of the external loading conditions is increased.  相似文献   

11.
12.
An X-ray diffraction and 57Fe Mössbauer spectroscopy investigation of Si100– x Fe x (0?<?x?<?80) thin films prepared by combinatorial sputtering methods is reported. Resulting Mössbauer spectra were fit to Voigt-based distributions of quadrupole doublets for paramagnetic spectral components and Zeeman split sextets for ferromagnetic spectral components. In conjunction with the X-ray measurements, these results show that the Si-rich films are a mixture of dilute Fe in amorphous Si and an approximately equiatomic amorphous SiFe phase. Fe-rich films show the presence of a ferromagnetically ordered phase. For x?<?73, this ferromagnetic phase is amorphous or nanostructured and for x?≥?73, the phase is shown to be a crystalline bcc phase. Results are discussed in terms of short-range structural ordering in these alloys.  相似文献   

13.
Pure W and W-Cu-W trilayer coatings were deposited on an Fe substrate by d.c. magnetron sputtering. The α-β phase evolution, intragranular stress evolution in sputter-deposited W layer were investigated by x-ray diffraction. They are directly related to the film microstructure, density and adhesion. Therefore, control of the film stress and phase component transition is essential for its applications. The phase component transition from β-W to α-W and intragranular stress evolution from tensile to compressive strongly depend on the deposition parameters and can be induced by lowering Ar pressure and rising target power. The compressively stressed films with α-W phase have a dense microstructure and high adhesion to Fe substrate.  相似文献   

14.
A combinatorial thin film library of the composition Fe100−yGayxAlx was prepared by magnetron sputtering. The composition was determined by electron microprobe and showed that the Fe content was reasonably constant across the library and the Al to Ga ratio varied linearly with position. The crystallographic structure was determined with X-ray diffraction and found to be bcc. 57Fe Mössbauer spectroscopy was used to investigate short-range order within the film. It was shown that non-magnetic atoms tend to cluster in these alloys, but that the substitution of Al for Ga reduced this tendency. This behavior may be, at least partially, responsible for the decrease in saturation magnetostriction between Fe–Ga and Fe–Al alloys.  相似文献   

15.
Image deconvolution analyses showed that reversion of S-Al2CuMg precipitates occurred in an Al–Cu–Mg alloy during high-resolution transmission electron microscopy observations. A fraction of Mg and Cu atoms in the precipitates diffused into Al matrix due to electron beam irradiation at 300 kV, resulting in structural/chemical reversion of the precipitates. The structural reversion of the S-Al2CuMg precipitates is closely related with irradiation-induced displacement of atoms. The strong attraction between Cu and Mg atoms might assist the sub-threshold displacement of Cu atoms. One transitional structure is determined to be S′′-Al10Cu3Mg3, a precursor of S-Al2CuMg. Two other transitional structures, Al3CuMg and Al18Cu5Mg5 which have the same lattice parameters of a = c = 0.405 nm as that of S′′-Al10Cu3Mg3, but different b values, are suggested.  相似文献   

16.
Electron microscopy and electron diffraction have been applied to show that the orthorhombic phase in the compound Ba2YCu3O7−δ is responsible for the high superconducting transition temperature. A positive correlation is found between the volume fration of the orthorhombic phase and the superconducting transition temperature. By means of an “in-situ” heating experiment it is found that the orthorhombic phase is formed on cooling from a high temperature tetragonal phase with disordered vacancies. It is suggested that the low temperature tetragonal phase that occurs in the same specimens as the orthorhombic phase also contains an ordered arrangement of vacancies different from that present in the orthorhombic phase. The order-disorder transition associated with the structural vacancies is shown to be reversible, provided there has been no oxygen loss.  相似文献   

17.
Fe81−xNixZr7B12 (x=20x=20, 30, 40) melt-spun alloys were investigated as potential new material applied as a sensing element of a fluxgate-type high-sensitivity magnetic field sensor. The sensitivity of the magnetometer was increased by about 60% by using the amorphous or nanocrystalline Fe41Ni40Zr7B12 alloy, compared with a standard reference sensing material. Application of this material can also extend the temperature range of the operation of the device.  相似文献   

18.
In the present work, the effects of Ni atoms and vacancy concentrations(0.1%, 0.5%, 1.0%) on the formation process of Cu solute clusters are investigated for Fe–1.24%Cu–0.62%Ni alloys by molecular dynamics(MD) simulations. The presence of Ni is beneficial to the nucleation of Cu precipitates and has little effect on coarsening rate in the later stage of aging. This result is caused by reducing the diffusion coefficient of Cu clusters and the dynamic migration of Ni atoms. Additionally, there are little effects of Ni on Cu precipitates as the vacancy concentration reaches up to 1.0%,thereby explaining the embrittlement for reactor pressure vessel(RPV) steel. As a result, the findings can hopefully provide the important information about the essential mechanism of Cu cluster formation and a better understanding of ageing phenomenon of RPV steel. Furthermore, these original results are analyzed with a simple model of Cu diffusion, which suggests that the same behavior could be observed in Cu-containing alloys.  相似文献   

19.
Hüseyin Arslan  Ali Dogan 《哲学杂志》2019,99(10):1206-1224
Experimental data in the literature are almost limited to determine the thermophysical properties of multicomponent complex alloys, especially due to the inability of laboratories to achieve the desired ideal conditions, due to the difficulty of protection from oxidation at high temperatures and other contamination at high temperatures, due to time and cost in laboratory studies. Due to these reasons, the theoretical data obtained in this subject is of great importance. In this study, a series of geometric and physical models, such as Chou’s general solution model (GSM), Muggianu’s Model, Kohler’s Model, Toop’s Model, Hillert’s Model, Guggenheim’s Model, Butler’s Model, Egry’s Model and ideal solution model for quasi-binary alloy system for Section A: Ni0.4(1 – x)CuxFe0.6(1 – x). and Section B: (NixCu0.2Fe0.8 – x) are used to calculate the surface tension-composition and surface tension-temperature curves of the Cu-Fe-Ni ternary liquid system are plotted. The data for this process is evaluated by means of an extended Redlich-Kister-Muggianu polynomial fit to the experimental values of the surface tensions of the binary liquid alloy systems. The obtained results for these models are also compared with the available data in the literature and relatively good agreements are observed. In addition, the surface segregation having important key factor in determining surface tension of the liquid alloy Ni-Fe-Cu has also been investigated in this work.  相似文献   

20.
We describe some important improvements allowed by the development of new cell assemblies coupled to opposed conical sintered diamond anvils in the Paris–Edinburgh press. We provide X-ray absorption and diffraction experiments carried out at pressures up to 16.5 GPa. The maximum temperature reached was 1800 K for P<10 GPa and 1300 K for higher pressures. The sintered diamond anvils are X-ray transparent and give access to a much larger X-ray window than the tungsten carbide anvils, even at the highest pressure. Therefore, X-ray measurements are performed using in situ cross-calibration simultaneously. We also describe a new heating setup used to reach high temperatures, despite the low conductivity of the sintered diamond core by deviating the electrical current using copper strips. These improvements are illustrated by recent data collected using angle dispersive in situ X-ray diffraction on liquid Fe-18%wt S and using EXAFS at the barium K-edge on Ba8Si46 silicon clathrates and at the iodine K-edge on iodine-intercalated nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号