首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In precipitation-strengthened polycrystals, precipitate-free zones (PFZs) often form along grain boundaries. These PFZs lower the yield strength. In this investigation, thin foils of the commercial γ′-strengthened nickel-based superalloy Nimonic PE16 have been strained inside a transmission electron microscope and the relevant dislocation processes in the PFZs and in the γ′-strengthened material next to them have been observed under load. Since the PFZs are only solid solution strengthened, they are softer than the interior of the γ′-strengthened grains. Many different slip systems are activated in the PFZs even at relatively low external stresses. Multiple slip allows for compatible deformation of neighbouring grains. Extensive cross-slip and double cross-slip in the PFZs lead to a high dislocation multiplication rate. Easy creation of dislocations in the PFZs and pile-ups at the border between the PFZs and the γ′-strengthened interior of the grains enhance the propagation of slip across grain boundaries and thus lower the yield strength of the material.  相似文献   

2.
李日  沈焕弟  冯长海  潘红  冯传宁 《物理学报》2013,62(18):188106-188106
在已有的几种溶质再分配计算模型的基础上, 建立了一个新的更为合理的溶质再分配模型.该模型充分考虑了枝晶生长过程中可能出现的固/液界面元胞的各种状态及其邻居元胞的各种状态, 根据这两者的不同状态, 分别建立不同的计算公式展开计算. 利用所建立的模型消除了原有的扩散控制的元胞自动机(CA)生长模型存在的在晶界处元胞不凝固的缺陷. 接着, 为了进一步验证模型的可靠性, 在Kurz-Giovanola-Trivedi方法控制的CA生长模型中引入新的溶质再分配计算模型, 对Al-4.7 wt%Cu 合金铸锭进行了模拟计算, 并与实验结果进行了金相组织和成分分布两方面的对比, 表明新模型具有较好的精确性. 关键词: 元胞自动机方法 微观组织模拟 溶质再分配  相似文献   

3.
A. J. Detor  M. K. Miller 《哲学杂志》2013,93(28):4459-4475
Atom probe tomography is used to observe the solute distribution in electrodeposited nanocrystalline Ni–W alloys with three different grain sizes (3, 10 and 20?nm) and the results are compared with atomistic computer simulations. The presence of grain boundary segregation is confirmed by detailed analysis of composition fluctuations in both experimental and simulated structures, and its extent quantified by a frequency distribution analysis. In contrast to other nanocrystalline alloys previously examined by atom probe tomography, such as Ni–P, the present nanocrystalline Ni–W alloys exhibit only a subtle amount of solute segregation to the intergranular regions.  相似文献   

4.
C. Thorning  S. Sridhar 《哲学杂志》2013,93(23):3479-3499
Confocal scanning laser microscopy (CSLM) was used in real-time observation of alloy element oxidation of a Mn/Al TRIP steel in an Ar–O2 atmosphere. CSLM images reveal a marked role of grain boundaries in the overall initial oxidation kinetics of the alloy, and consequently in the morphology of the initial surface oxide. The oxidation on the alloy surface is dominated by the formation of Mn-rich oxide ridges along grain boundary traces on the surface. Oxide ridge formation kinetics was quantified by measurements on images extracted from real-time recordings of surface oxide evolution. Oxide ridge growth was found to take place at a constant rate. Scanning electron microscopy (SEM) images of the oxidized surfaces showed homogenous oxide ridges along straight grain boundary traces and heterogeneous oxide ridges along non-straight grain boundary traces. A transport mechanism of Mn to the surface is proposed, which relies on grain boundary segregation of Mn and on a relationship between grain boundary diffusivity and grain boundary character. It is suggested that when regarding alloys with significant grain boundary segregation of a solute, separate Wagner balances for internal vs. external oxidation is required for the grain lattices and the grain boundaries, respectively.  相似文献   

5.
A Lattice Energy Function that combines a Mie type interatomic potential and a free electron gas volume dependence has been applied to the study of grain boundary energy and structure of a Σ = 5 tilt boundary in Au, Cu and Ni and of solute segregation to the same. Interatomic potentials and volume dependencies of the solvent and solute were adjusted to fit the relative partial molar enthalpy and volume at infinite dilution order to construct a AB type potential and volume dependence. This AB interaction is then applied to calculate the binding energies of solute to various grain boundary sites and the resulting change in grain boundary energy. A relationship between the binding energy and change in grain boundary is derived. The relative values of the grain boundary energy are in agreement with experimental values of the average grain boundary energies. The relative binding energies of the tested solvent-solute systems are in agreemnet with expectations that certain systems should have larger binding energies than others. The behavior of solute binding energies and local relaxations are in agreement with other studies of grain boundary segregation which use different Lattice Energy Functions and relaxation algorithms. The change in grain boundary energy is shown to be directly proportional to the binding energy.  相似文献   

6.
In order to investigate the effect of rotating magnetic field on the microstructure formation of peritectic alloys, directional solidification experiments of Sn–1.6Cd peritectic alloy have been conducted under different rotating magnetic field conditions. The directional solidification microstructure of Sn–1.6Cd peritectic alloy changes from banded structure to axisymmetric isolated banded structure to axisymmetric oscillatory tree-like banded structure and to single primary phase structure when the magnetic Taylor number of forced-melt flow generated by a rotating magnetic field increases from 0 to 91 to 364 and to 1456. The second and third banded structures are observed in a peritectic alloy for the first time. The results indicate that it is possible to control solidification microstructure and prepare a single primary phase structure by using a rotating magnetic field during directional solidification of peritectic alloys. The experiments show that the effect of forced-melt flow on solute distribution transforms from solute buildup to homogenization with an increase in the magnetic Taylor number. The formation mechanisms of those structures are also discussed.  相似文献   

7.
I-Wei Chen 《Interface Science》2000,8(2-3):147-156
Kinetics of grain boundaries in oxides with the cubic fluorite structure and its derivatives has been investigated using fine grain ceramics that are fully dense. Grain growth measurements in these materials have provided information on grain boundary diffusivity over a diffusion distance of the order of the initial grain size. With the addition of solute cations, grain boundary mobility can be varied over many orders of magnitude, often with very different activation energies. This is caused by the variation of defect population and the defect-solute association. Definitive evidence for solute drag has also been observed in some cases, but solute drag can not be confirmed as a general mechanism in solid solutions. Lastly, while grain boundary at low temperature may continue to serve as a fast diffusion path, it may not be able to migrate because of additional pinning mechanisms such as those exerted by grain boundary nodal points or lines. This means that sintering without grain growth is possible, opening up an avenue for obtaining ultrafine ceramics by pressureless sintering.  相似文献   

8.
The effect of alloying elements on the toughness and the fracture behaviour was investigated on seven kinds of Mg-0.3?at.% X (X?=?Ag, Al, Ca, Pb, Sn, Y and Zn) alloys with a grain size of 3–5?μm. The fracture toughness and fracture behaviour in magnesium alloys were closely related to the segregation energy. The Mg–Al and –Zn alloys that had small segregation energy showed high toughness and ductile fracture in most regions, while the Mg–Ca alloy with large segregation energy exhibited low toughness and intergranular fracture. These different tendencies resulted from solute segregation at grain boundaries (GBs). The change in the lattice parameter ratio was the influential material parameter regardless of whether the GB embrittlement was for enhancement or suppression.  相似文献   

9.
Mössbauer spectra of fine-grained hot-pressed beryllium and coarse-grained beryllium samples containing different amounts of impurities were obtained after homogenization and after annealing for different durations. Mössbauer spectra of solid solution of iron in beryllium and decomposed during isothermal annealing two different iron containing phases were fitted by a convolution equation of three Lorentz lines. The models of solid solution decomposition and growth of secondary particle precipitates were investigated. The average distance between dislocations and the average grain size were obtained from the application of the models. The dependencies between the decomposition mechanism, the average grain size, the impurity concentrations and the type of the secondary particles precipitates were revealed. The possibility of a coherent analysis of the decomposition process by means of a kinetic law classification and secondary particle precipitates growth processes based on diffusion models has been shown.  相似文献   

10.
《Solid State Ionics》2006,177(26-32):2555-2559
The electrical conductivity of polycrystalline Sr(Ti0.999Nb0.001)O3 was investigated. The conductivity was smaller by 1–2 order than that of the single crystal. The conductivity increased with temperature with the activation energy of 0.61 eV. The distribution of grain boundary nature of the polycrystalline sample was determined by Orientation Imaging Microscope (OIM) analysis. The ratio of coincident lattice boundaries was determined to be approximately 20%. The impedance of bicrystals across the grain boundary with different grain boundary type was measured. The grain boundary impedance was found to consist of two RC parallel components in series. The activation energies of them were 0.56–0.71 eV and 1.73–1.97 eV, respectively. These two processes were assigned to the grain boundary or annealed surface layer and the Schottky barrier between the bulk and the surface or the grain boundary layer. A possible conduction mechanism of polycrystalline material was considered that of the three dimensional network of the grain boundary layer.  相似文献   

11.
Recent experimental data on diffusion-induced grain boundary migration (DIGM) are reviewed. For the case of the coherency strain driving force, quantitative criteria for the occurrence of DIGM are suggested, which establish the relationship between the net driving force for grain boundary migration, the diffusivity in the vicinity of the grain boundary, the enthalpy of the grain boundary segregation, the misfit parameter for the solute atoms in the matrix and the solubility of the diffusing element in the matrix. It is shown that an upper limit for the grain boundary velocity during DIGM exists due to the solute drag effect.  相似文献   

12.
Regarding that the excess volume in grain boundaries (GBs) is released as the vacancies which are accommodated by the crystal bulk during grain growth, a free-energy function for binary nanocrystalline solid solution is proposed, based on the pairwise nearest-neighbor interactions. The model, for the given composition and temperature, predicts an equilibrium grain size, subjected to a mixed effect due to solute segregation and due to excess vacancies. Furthermore, excess-vacancy-inhibited grain coarsening can be attained, which plays a minor role in holding the thermal stability of nanocrystalline alloys, as compared to the effect of solute segregation.  相似文献   

13.
Transformation behaviour in thin foils of a Ni-12 at.% Ti alloy was investigated by means of in situ aging and electron irradiation experiments inside a high voltage electron microscope. It is shown experimentally that the mode or the morphology of precipitation and ordering reactions in the thin foils differ somewhat from that observed in the bulk material. In the thicker part of the thin foils aged in situ at 873–973 K, a periodic modulated structure is observed to consist of a periodic array of cuboidal coherent particles along the [100] crystallographic directions. The development of ordering within the solute enriched particles appears to be much slower than in the bulk specimen In the thinner part of the foil or in the near-surface regions, no precipitation or ordering occurs and so-called precipitate-free zones (PFZs) are observed. At a higher temperature of 1073 K, precipitation takes place preferentially at the foil surfaces Electron irradiation at elevated temperatures is found to disturb the formation and growth of a metastable modulated structure. and alter the distribution and the morphology of precipitate particles initially present.

The observed transformation characteristics in the thin foil can be understood in terms of the proximity of external surfaces which act as dominant sinks for point defects or solute atoms in a thin foil. Electron irradiation affects the sink efficiency of the foil surfaces as a result of the radiation-enhanced diffusion.  相似文献   

14.
15.
Knowledge of the limits of the principal Harrison kinetics regimes (Types A, B and C) for grain boundary diffusion is very important for the correct analysis of depth profiles in a tracer diffusion experiment. These regimes for self‐diffusion have been extensively studied in the past by making use of the phenomenological lattice Monte Carlo (LMC) method with the result that the limits are now well established. However, the relationship of these self‐diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregation on the limits was investigated with the LMC method for the well‐known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type‐B kinetics regime may differ from the global segregation factor.  相似文献   

16.
A phase-field model for modeling the diffusional processes in an elastically anisotropic polycrystalline binary solid solution is described. The elastic interactions due to coherency elastic strain are incorporated by solving the mechanical equilibrium equation using an iterative-perturbation scheme taking into account elastic modulus inhomogeneity stemming from different grain orientations. We studied the precipitate interactions among precipitates across a grain boundary and grain boundary segregation–precipitate interactions. It was shown that the local pressure field from one coherent precipitate influences the shape of precipitates in other grains. The local pressure distribution due to primary coherent precipitates near the grain boundary leads to inhomogeneous solute distribution along the grain boundary, resulting in non-uniform distribution of secondary nuclei at the grain boundary.  相似文献   

17.
This study investigates the recovery of electric resistivity in pure iron, Fe–0.6Ni and Fe–1.5Mn as related to isochronal annealing following 1 MeV proton irradiation at lower temperature than 70 K, focusing on the relationship between solute atoms and irradiation defects. Both nickel and manganese prevent stage ID recovery, which corresponds to correlated recombination. Stage II recovery is also changed by the addition of a solute, which corresponds to the migration of small interstitial clusters. In both pure iron and Fe–0.6Ni, no evident difference was observed in the stage III region, which corresponds to the migration of vacancies. In contrast, two substages appeared in the Fe–1.5Mn at a higher temperature than stage IIIB appeared in pure iron. These substages are considered to represent the release of irradiation-induced defects, which was trapped by manganese.  相似文献   

18.
Aluminium alloy 5182 (AA5182) contains approximately 4.5% Mg as its principal alloying addition, and is most commonly used to make the lid of the aluminium can. With a view to the possible future development of a micro-macro model to describe the casting of this alloy, the effect of grain refinement on the microsegregation of magnesium in industrial rolling ingots of AA5182 has been investigated at three different depths beneath the edge of the ingot (and hence three different cooling rates)—60, 140 and 600 mm. The accuracy with which published microsegregation models are able to predict the solute distribution profile is assessed. It has been found that the magnesium segregation range (CmaxCmin) of the grain refined samples actually increases as cooling rate decreases. The range of the non grain refined samples is independent of cooling rate. The solute concentration profiles of the theoretical microsegregation models examined do not correlate well with the experimentally measured profiles. It is concluded that this poor correlation is due to either the effect of post solidification homogenisation or the influence of macroscopic variables during the cast. A more accurate model of post solidification homogenisation is required to assess the relative contribution of each of these factors to the poor correlation. In addition, it is concluded that the measurement of segregation is best done using a combination of EDX mapping and point analysis techniques to locate and quantify the areas of maximum and minimum solute concentration.  相似文献   

19.
M. J. Starink  N. Gao  L. Davin  J. Yan  A. Cerezo 《哲学杂志》2013,93(13):1395-1417
The microstructural evolution during low temperature ageing of two commercial purity alloys (Al–1.2Cu–1.2Mg–0.2Mn and Al–1.9Cu–1.6Mg–0.2Mn?at.%) was investigated. The initial stage of hardening in these alloys is very rapid, with the alloys nearly doubling in hardness during 20?h ageing at room temperature. The microstructural evolution during this stage of hardening was investigated using differential scanning calorimetry (DSC), isothermal calorimetry and three–dimensional atom probe analysis (3DAP). It is found that, during the hardening, a substantial exothermic heat evolution occurs and that the only microstructural change involves the formation of Cu–Mg co–clusters. The kinetics of cluster formation is analysed and the magnitude of the hardening is discussed on the basis of a model incorporating solid solution hardening and modulus hardening originating from the difference in modulus between Al and clusters.  相似文献   

20.
《Composite Interfaces》2013,20(5):495-514
The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends in turn on the processing of the MMC component. At the micro-level, the development of local concentration gradients around the reinforcement can be very different according to the nominal conditions. These concentration gradients are due to the metal matrix attempting to deform during processing. This plays a crucial role in the micro-structural events of segregation and precipitation at the matrix-reinforcement interface. Equilibrium segregation occurs as a result of impurity atoms relaxing in disordered sites found at interfaces, such as grain boundaries, whereas non-equilibrium segregation arises because of imbalances in point defect concentrations set up around interfaces during non-equilibrium heat treatment processing. The amount and width of segregation depend very much on (a) the heat treatment temperature and the cooling rate, (b) the concentration of solute atoms and (c) the binding energy between solute atoms and vacancies. An aluminium–silicon–magnesium alloy matrix reinforced with varying amounts of silicon carbide particles was used in this study. A method of calculation has been applied to predict the interfacial fracture strength of aluminium, in the presence of magnesium segregation at metal matrix interface. Preliminary results show that the model succeeds in predicting the trends in relation to segregation and intergranular fracture strength behaviour in these materials. Microhardness profiles of reinforced and un-reinforced aluminium alloys are reported. The presence of precipitates at alloy-reinforcement interface identified by Nano-SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号