首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

2.
The mixing of Au in Si induced by secondary and high-order recoil implantation was investigated using 350 keV Ar+ and 350 keV Kr+ ions to fluences from 1?×?1016 to 3?×?1016 ions/cm2 at room temperature. The thickness of the Au layer evaporated on Si substrate was ~2400 Å.The ranges of the Ar and Kr ions were chosen to be lower than the thickness of the Au layer in order to avoid the ballistic mixing produced by the primary knock-on atoms. Rutherford backscattering spectrometry (RBS) experiments were carried out to study the effects induced by Ar and Kr irradiation at the interface of Au–Si system. We observed that in the case of the irradiation with Ar+ ions, a broadening of the Au–Si interface occurred only at the fluence of 3?×?1016 Ar+/cm2 and it is attributed to the surface roughening induced by ion bombardment. In contrast, the RBS analysis of a sample irradiated with 2?×?1016 Kr+/cm2 clearly showed, in addition to the broadening effect, the formation of a mixed zone of Au and Si atoms at the interface. The mixing of Au in Si atoms can be explained by the secondary and high-order recoil implantation followed by subsequent collision cascades.  相似文献   

3.
ABSTRACT

Thermally grown SiO2 thin films on a silicon substrate implanted with 100?keV silicon negative ions with fluences varying from 1?×?1015 to 2?×?1017 ions cm?2 have been investigated using Electron spin resonance, Fourier transforms infrared and Photoluminescence techniques. ESR studies revealed the presence of non-bridging oxygen hole centers, E′-centers and Pb-centers at g-values 2.0087, 2.0052 and 2.0010, respectively. These vacancy defects were found to increase with respect to ion fluence. FTIR spectra showed rocking vibration mode, stretching mode, bending vibration mode, and asymmetrical stretching absorption bands at 460, 614, 800 and 1080?cm?1, respectively. The concentrations of Si–O and Si–Si bonds estimated from the absorption spectra were found to vary between 11.95?×?1021 cm?3 and 5.20?×?1021 cm?3 and between 5.90?×?1021 cm?3 and 3.90?×?1021 cm?3, respectively with an increase in the ion fluence. PL studies revealed the presence of vacancies related to non-bridging oxygen hole centers, which caused the light emission at a wavelength of 720?nm.  相似文献   

4.
ABSTRACT

In the present work, effects of silicon negative ion implantation into semi-insulating gallium arsenide (GaAs) samples with fluences varying between 1?×?1015 and 4?×?1017?ions?cm?2 at 100?keV have been described. Atomic force microscopic images obtained from samples implanted with fluence up to 1?×?1017?ion?cm?2 showed the formation of GaAs clusters on the surface of the sample. The shape, size and density of these clusters were found to depend on ion fluence. Whereas sample implanted at higher fluence of 4?×?1017?ions?cm?2 showed bump of arbitrary shapes due to cumulative effect of multiple silicon ion impact with GaAs on the same place. GXRD study revealed formation of silicon crystallites in the gallium arsenide sample after implantation. The silicon crystallite size estimated from the full width at half maxima of silicon (111) XRD peak using Debye-Scherrer formula was found to vary between 1.72 and 1.87?nm with respect to ion fluence. Hall measurement revealed the formation of n-type layer in gallium arsenide samples. The current–voltage measurement of the sample implanted with different fluences exhibited the diode like behavior.  相似文献   

5.
A combination of X-ray diffraction, cross-sectional transmission electron microscopy (XTEM), and Raman spectroscopy was used to study the effects of irradiation with swift heavy ions on helium and hydrogen co-implanted silicon.<100>-oriented silicon wafers were co-implanted with 30 keV helium to a dose of 3×1016He+/cm2 and 24 keV protons to a dose of 2×1016 H+/cm2. Moreover, selected helium and hydrogen co-implanted Si wafers were irradiated with 94 MeV xenon. After He and H co-implantation and Xe-irradiation, the wafers were annealed at a temperature of 673 K for 30 min. The damage region of the wafers was examined by the XTEM analysis. The results reveal that most of the platelets are aligned parallel to the (100) plane in the He and H co-implanted Si. However, majority of the platelets lie in<texlscub>111</texlscub>planes after Xe irradiation. Blisters do not occur on the sample surface after Xe irradiation. Raman results reveal that the intensities of both SiH2 and V2H6 modes increase with the increase in the dose of Xe. A possible explanation is that strong electronic excitation during Xe irradiation produces annealing effect, which reduces both lattice damage and the out-of-plane tensile strain.  相似文献   

6.
The total charge-exchange cross section, σ+0, for He+ incident on Cs vapor has been measured in the energy range 0.5 to 41 keV. The cross section falls from (1664 ± 100) × 10?17 cm2 at 1.4 keV to (224 ± 20) × 10-17 cm2 at 41 keV. These measurements are compared with previous measurements and with theoretical calculations of this cross section.  相似文献   

7.
Absolute cross sections for electron impact ionization and dissociation of OH+ and OD+ leading to the formation of the OH2+, O+, O2+, O3+ and D+ ions have been measured by applying the animated electron-ion beam method in the energy range from the respective reaction thresholds up to 2.5 keV. The maximum of the single ionization cross section is found to be (0.95? ± ?0.02) × 10?19 cm2 at 155 eV. The maximum total cross sections for O+ and D+ fragments production are observed to be (15.7? ± ?0.2) × 10?17 cm2 at 95 eV and (10.8? ± ?0.5) × 10?17 cm2 at 95 eV, respectively. The cross sections for O2+ and O3+ are much smaller, (5.37? ± ?0.04) × 10-18 cm2 at 135 eV and (7.95? ± ? 0.23) × 10-20 cm2 at 315 eV, respectively. The collected data are analyzed in details in order to determine separately the contributions of dissociative excitation and of dissociative ionization to the O+ and D+ fragments production.  相似文献   

8.
Abstract

The amorphization process of GaP by ion implantation is studied. The samples of 〈111〉 oriented GaP were implanted at 130 K with various doses 5 × 1013-2 × 1016 cm?2 of 150 keV N+ ions and with the doses of 6 × 1012-1.5 × 1015 cm?2 of 150 keV Cd+ ions. Room temperature implantations were also performed to see the influence of temperature on defect production. Rutherford backscattering and channelling techniques were used to determine damage in crystals. The damage distributions calculated from the RBS spectra have been compared with the results of Monte-Carlo simulation of the defect creation.

The estimated threshold damage density appeared to be independent on ion mass and is equal 6.5 × 1020 keV/cm3. It is suggested that amorphization of GaP is well explained on the basis of a homogenous model.  相似文献   

9.
ABSTRACT

Polycarbonate (PC) and polyethylene terephthalate (PET) thermoplastic polymer films were irradiated by low energy ion beams such as 100 keV Hydrogen (H+) ions and 350 keV Nitrogen (N+) ions at varied fluence from 1?×?1013 ions/cm2 to 5?×?1014 ions/cm2. The depth profile concentration of ions was calculated using Stopping and Range of Ions in Matter (SRIM) software code. Fourier Transform Infrared (FTIR) technique shows decrement in the intensity of peaks and disappearance of peaks mainly related to carbonyl stretching at 1770?cm?1 and C–C stretching at 1500?cm?1. Scanning electron microscopy (SEM) of irradiated polymers showed the formation of pores. X-ray diffraction (XRD) analysis has showed decrease in the intensity indicating the decrease in crystallinity after irradiation. Mechanical studies revealed that the molecular weight and microhardness decrease with increase in ion fluence due to increase in chain scission. The contact angle increased with increase in ion fluence indicating the hydrophobic nature of polymer after irradiation. Antibiofilm activity test of irradiated films shows resistance to Salmonella typhi (S. typhi) pathogen responsible for typhoid. The study shows that Nitrogen ion induces more damage compared to Hydrogen ions and PC films get more modified than PET films.  相似文献   

10.
The cross section of the reaction D(4He, γ)6Li with titanium and zirconium deuterides as targets is measured for incident 4He+ ion energies of 30 and 36 keV, respectively. The ion beam is generated by a Hall pulsed plasma accelerator. For the first time, upper limits on the cross section of the reaction D(4He, γ)6Li at ultralow energies are imposed (at 90% confidence level): σ ≤ 1.2 × 10?35 cm2 for the TiD2 target and E(4He+) = 30 keV, and σ ≤ 7 × 10?36 cm2 for the ZrD2 target and E(4He+) = 36 keV  相似文献   

11.
Large dimensional expansion has been observed at room temperature in erbium metal films implanted at room temperature with high fluences of helium. The interferometrically measured film thickness increases linearly with fluence up to a critical dose of 3 × 1017 He+/cm2 (E = 160 keV) and is superlinear at higher fluences. Annealing at 400°C causes a reduction of the induced expansion for fluences below the critical dose without apparent release of helium. Annealing of samples implanted to fluences greater than 3.5 × 1017 He+/cm2 causes accentuated expansion which is accompanied by formation and rupture of bubbles at the film surface.  相似文献   

12.
The formation of a thin layer of hexagonal Y Si2?x phase on a single-crystal Si(111) substrate by implantation of 195 keV Y ions with a dose of 5×1016Y +/cm2 at room temperature (RT) is investigated. The structural characterization of the as-implanted and annealed samples is performed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD) pole figure and cross-sectional transmission electron microscopy (XTEM). The results show that the orientation relationship between the Y Si2?x layer and Si substrate is Y Si2?x(0 0 0 1)//Si(111) and Y Si2?x[1 1 -2 0]//Si [110].  相似文献   

13.
Epitaxially grown GaAs(001), (111) and (1?1?1?) surfaces and their behaviour on Cs adsorption are studied by LEED, AES and photoemission. Upon heat treatment the clean GaAs(001) surface shows all the structures of the As-stabilized to the Ga-stabilized surface. By careful annealing it is also possible to obtain the As-stabilized surface from the Ga-stabilized surface, which must be due to the diffusion of As from the bulk to the surface. The As-stabilized surface can be recovered from the Ga-stabilized surface by treating the surface at 400°C in an AsH3 atmosphere. The Cs coverage of all these surfaces is linear with the dosage and shows a sharp breakpoint at 5.3 × 1014 atoms cm?2. The photoemission reaches a maximum precisely at the dosage of this break point for the GaAs(001) and GaAs(1?1?1?) surface, whereas for the GaAs(111) surface the maximum in the photoemission is reached at a higher dosage of 6.5 × 1014 atoms cm?2. The maximum photoemission from all surfaces is in the order of 50μA Im?1 for white light (T = 2850 K). LEED measurements show that Cs adsorbs as an amorphous layer on these surfaces at room temperature. Heat treatment of the Cs-activated GaAs (001) surface shows a stability region of 4.7 × 1014 atoms cm?2 at 260dgC and one of 2.7 × 1014 atoms cm?2 at 340°C without any ordering of the Cs atoms. Heat treatment of the Cs-activated GaAs(111) crystal shows a gradual desorption of Cs up to a coverage of 1 × 1014 atoms cm?2, which is stable at 360°C and where LEED shows the formation of the GaAs(111) (√7 × √7)Cs structure. Heat treatment of the Cs-activated GaAs(1?1?1?) crystal shows a stability region at 260°C with a coverage of 3.8 × 1014 atoms cm?2 with ordering of the Cs atoms in a GaAs(1?1?1?) (4 × 4)Cs structure and at 340°C a further stability region with a coverage of 1 × 1014 at cm?2 with the formation of a GaAs(1?1?1?) (√21 × √21)Cs structure. Possible models of the GaAs(1?1?1?) (4 × 4)Cs, GaAs(1?1?1?)(√21 × √21)Cs and GaAs(111) (√7 × √7)Cs structures are given.  相似文献   

14.
以50keV和100keV能量的氢离子注入p型(100)直拉硅单晶薄膜。注入剂量为1015—2×1017H+/cm2。试样在HU-1300型超高压透射电子显微镜中进行电子辐照和原位加热动态观察。结果表明在20—300℃温度范围内与未注氢硅相比,注氢硅在相同的电子辐照条件下产生的电子辐照缺陷较少,电子辐照缺陷形成所需的潜伏时间较长。在电子显微镜中加热试样时于190℃开始观察到氢泡,190—220℃范围内氢泡逐渐产生并长大 关键词:  相似文献   

15.
The formation of nanosize silicides films by implantation of B, P, Ba, and alkali metal atoms in Si(111) and Si(100) followed by thermal annealing is studied by electron spectroscopy and slow-electron diffraction methods. It is shown that implantation of ions with a large dose D > 1016 cm?2 and short-term heating lead to the formation of thin silicides films with new surface superstructures: \(Si(111) - (\sqrt 3 \times \sqrt 3 )R30^ \circ - B\) , Si(100)-2 × 2Ba, Si(111)-1 × 1P, etc.  相似文献   

16.
Reordering of 〈111〉 silicon, implanted with Pb ions at energies >100 keV and fluences ~5 × 1015 cm?2 is accompanied by substantial impurity indiffusion in addition to pronounced outdiffusion and accumulation at the near surface region.  相似文献   

17.
In situ self-ion irradiations (150?keV?W+) have been carried out on W and W–5Re at 500?°C, with doses ranging from 1016 to 1018 W+m?2 (~1.0?dpa). Early damage formation (1016W+m?2) was observed in both materials. Black–white contrast experiments and image simulations using the TEMACI software suggested that vacancy loops were formed within individual cascades, and thus, the loop nucleation mechanism is likely to be ‘cascade collapse’. Dynamic observations showed the nucleation and growth of interstitial loops at higher doses, and that elastic loop interactions may involve changes in loop Burgers vector. Elastic interactions may also promote loop reactions such as absorption or coalescence or loop string formation. Loops in both W and W–5Re remained stable after annealing at 500?°C. One-dimensional hopping of loops (b?=?1/2 ?111>) was only seen in W. At the final dose (1018W+m?2), a slightly denser damage microstructure was seen in W–5Re. Both materials had about 3–4?×?1015 loops m?2. Detailed post-irradiation analyses were carried out for loops of size???4?nm. Both b?=?1/2 ?111? (~75%) and b?= ?100> (~25%) loops were present. Inside–outside contrast experiments were performed under safe orientations to determine the nature of loops. The interstitial-to-vacancy loop ratio turned out close to unity for 1/2 ?111? loops in W, and for both 1/2 ?111? and ?100? loops in W–5Re. However, interstitial loops were dominant for ?100? loops in W. Re seemed to restrict loop mobility, leading to a smaller average loop size and a higher number density in the W-Re alloy.  相似文献   

18.
本文以时间分辨的反射率测量结合背散射和沟道分析、透射电子显微镜分析,比较和研究了在77K温度下180keV,1×1014/cm2P2+和90KeV,2×1014/cm2P+注入硅于550℃退火时的固相外延过程。发现了P2+,P+注入硅样品的固相外延过程具有不同的特征。这种差异是由于P2+和P+在硅中引入不同的损伤造成的。P+注入的硅样品测量得到的时间分辨的反射谱是反常的。这种反常谱可用样品退火时从表面层到非晶硅层与从衬底到非晶硅层的双向外延的过程给出满意的解释。 关键词:  相似文献   

19.
Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irradiated on the (110) end face by low-energy (E=17 keV) He+ ions at doses ranging from 5×1016 to 4.5×1017 cm−2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3×1017 cm−3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nanopores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at 600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm−1 discovered in the helium-doped a-Si layer are identified as low-energy He+ ion tracks.  相似文献   

20.
Topographical and expansion effects which occur as a result of implanting erbium thin films with helium up to fluences of 1.5 × 1018 He+/cm2 are described. There exists an inverse relationship between critical dose and annealing temperature with respect to the formation of surface bubbles. Post implantation annealing at or below 400°C is found to strongly reduce implantation induced expansion for doses less than 3.5 × 1017 He+/cm2, but is observed to result in increased expansion above this dose. At temperatures above 400°C, expansion is increased for all doses investigated. Details of bubble development in the implanted layer are discussed and the manner in which surface bubbles develop from enlarged subsurface bubbles is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号