首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First-principles calculations have been used to investigate the structural, electronic and elastic properties of the filled skutterudite CeRu4P12, using the full-potential linear muffin-tin orbital (FP-LMTO) method. The exchange-correlation energy is described in the local spin density approximation (LSDA) using the Perdew–Wang parameterization. The results of the electronic properties show that this compound is an indirect band gap material. A special interest has been made to the determination of the elastic constants since there have been no available experimental and theoretical data. The energy band gaps and their volume and pressure dependence are investigated. Our results of the ground-state electronic properties are found to agree with experimental results.  相似文献   

2.
A CoFe2O4/Pb(Zr0.53Ti0.47)O3 (CFO/PZT) multiferroic composite thick film assisted by polyvinylpyrrolidone (PVP) was prepared by a hybrid sol–gel processing and spin coating technique. Scanning electronic microscopy indicated a porous microstructure with a thickness of 6.2 μm. Pure PZT perovskite phase observed from x-ray diffraction suggested that the low ratio of CFO particles was deeply buried in the PZT matrix. Ferroelectric and ferromagnetic properties were observed simultaneously at room temperature as well as a lower leakage current compared with a CFO/PZT thin film. The dynamic and static magnetoelectric effects were strongly dependent on the applied DC/AC magnetic field but their values were very low. The results demonstrated the prediction that ferroelectric and ferromagnetic properties can induce a strong magnetoelectric coupling only if a dense microstructure was achieved.  相似文献   

3.
First-principles calculations were performed to explore the structural, elastic and electronic properties of the ternary indium chalcogenides AInQ2 (A: K, Rb and Q: S, Se, Te) in both monoclinic and triclinic phases. This study is carried out by using the first-principles pseudopotential plane-wave (PP–PW) method as implemented in CASTEP code. Both the generalized gradient approximation of Perdew–Burke–Ernzerhof scheme (GGA–PBE) and the Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional were used to treat the exchange-correlation interactions. In order to confirm the previous reports and to understand the effect of symmetry in determining the physical properties of these layered materials we have calculated the structural and the electronic properties at the equilibrium lattice constant for both the systems. The single-crystal elastic constants Ci j are calculated using the stress-strain approach. The elastic moduli of the polycrystalline aggregates and their related properties are obtained in the framework of Voigt–Reuss–Hill approximations. Electronic band structure indicates the semiconducting behaviour with a direct band gap at Γ–Γ. The results obtained from the (HSE06) hybrid functional are in excellent agreement with the available experimental data and computed results for the monoclinic and triclinic structures.  相似文献   

4.
The electronic and optical properties of AgAlO2 were determined by using Generalized Gradient Approximation (GGA) suggested by Perdew–Burke–Ernzerhof (PBE) with the addition of Hubbard potential along with linearized augmented plane wave pseudopotential. Our computed band structure infers that our calculated bandgap (1.5?eV) is closer to the experimental (2.81?eV) as compare to the previous theoretical values (1.16?eV). The investigated band structure also reflects that AgAlO2 is an indirect semiconductor material. The investigated atomic positions and lattice constants are in good agreement with the experimental values than the earlier theoretical values. From presented optical properties one can observe that AgAlO2 is a good conducting material. The absorption spectrum infers that AgAlO2 is an expensive material for photo-electronic devices or solar-cell applications.  相似文献   

5.
PZT–silica fume cement (PZT–SFC) composites were produced using PZT (at 50% and 60% by volume) and silica fume cement (cement containing silica fume of 5% and 10% by weight). PZT–Portland cement with no silica fume was also produced to allow comparison of the results. Dielectric constants of PZT–SFC composites are found to be higher than that of PZT–PC composite where εr value was found to increase with increasing SF content (εr values of composite with SF at 0%, 5% and 10% are 117, 125 and 178, respectively). PZT–SFC composites were successfully poled and d33 results of PZT–SFC composites (d33 = 18 pC/N) were found to be marginally higher than that of PZT–PC composite (d33 = 17 pC/N). SEM micrograph also shows a dense matrix of SFC hydration product surrounding the PZT particles. From the results, these PZT–SFC composites are therefore promising materials for use in structural applications and should be ideal for high strength structures where SFC is used in the host structure.  相似文献   

6.
A. Gueddim  S. Zerroug 《哲学杂志》2015,95(24):2627-2638
We present first principles calculations of structural, electronic and optical properties of ZnS1?xOx in the zinc-blende phase. We employ the full potential linearized augmented plane wave method within the density functional theory in the generalized gradient approximation and Engel–Vosko generalized gradient approximation. Features such as the lattice constant, the bulk modulus and its pressure derivative are reported. The agreement between our calculated results and available experimental and theoretical data is generally good. Direct and indirect energy band gaps as a function of the oxygen composition in the material of interest are presented and discussed. The material under investigation is found to remain a direct band gap semiconductor over all the alloy composition range (0–1). Furthermore, the optical properties such as the dielectric function, the refractive index, the reflectivity and the electron loss energy have also been reported and analysed.  相似文献   

7.
Lead zirconate titanate (PZT) and cement composites of 0–3 connectivity were produced using PZT of 30–90% by volume. The effects of PZT on dielectric and piezoelectric properties of the composites were then investigated. The dielectric constant (εr) of the composites was found to increase with increasing PZT content. The εr value of 90% PZT composite obtained was 291 which is noticeably higher than that of PC sample (εr = 79). The dielectric loss (tan δ) was found to decrease with PZT content and the tan δ value was lowest at 0.63 for 90% PZT composite. Piezoelectric coefficient (d33) was found to increase with PZT content as expected. However, the effects were most significant at two stages, first at 30% PZT volume content (14 pC/N) and then at very high PZT content (90% by volume) where d33 value reached 43 pC/N.  相似文献   

8.
ABSTRACT

The geometric structures, electronic and mechanical properties of the high vacancy concentration intermetallic FeAl (experimental value: 3.3 at.% at 1451?K) were investigated by first-principles calculations based on density functional theory. The FeAl structures of different vacancy concentration with minimum energy were addressed, which shows that vacancies of iron (VFe) are more favourable and tend to gather together. For mechanical properties, both Young's modulus and elastic constants show an overall downward trend as vacancy concentration increases, but increase abnormally with the vacancy concentration ranging from 3.7 at.% to 5.6 at.%. All can be explained by the strength of Al–Fe bond, in other words, the Al–Fe interaction. Interestingly enough, intermetallic FeAl shows a transfer from the brittle manner to ductile manner, which also behaves as an important feature of FeAl in experiments. All the mechanical properties agree well with experimental data, indicating the reasonable vacancy model of FeAl intermetallic.  相似文献   

9.
Electrochemical impedance spectra (EIS) for lithium ion insertion and extraction in α-MoO3 cathode material were obtained at different potentials during initial discharge–charge cycle. A significant “three semicircles” were obtained at 0.5 V in the Nyquist diagram, and were assigned to lithium ion migration through solid electrolyte interphase (SEI) film, the electronic properties of the material as well as charge transfer step, respectively. An equivalent circuit that includes elements related to the electronic and ionic transport, in addition to the charge transfer process, is proposed to simulate the experimental EIS data. The variations of the resistance of SEI film, the electronic conductivity of the material and the resistance of charge transfer along with the increase and decrease of electrode polarization potential were quantitatively analyzed, and the reasonable explanation is given. Furthermore, the chemical diffusion coefficients of lithium ion in α-MoO3 cathode material were calculated.  相似文献   

10.
In this work, the effect of PZT particle size on the properties of PZT–PC composites was investigated. PZT of various median particle sizes (3.8–620 μm) were used at 50% by volume to produce the composites. The results showed that the dielectric properties of the composites increased marginally with PZT particle size where εr = 176 and 167 for composites with 620 μm and 3.8 μm PZT particle size, respectively. A noticeable increase in d33 values was also found when the particle size was increased where the composite with 620 μm PZT particles size was found to have d33 value of 26 pC/N compared to 17 pC/N for the composite with 3.8 μm PZT particle size. The enhancement in the dielectric and piezoelectric properties was contributed to lesser contacting surfaces between the cement matrix and the PZT particles.  相似文献   

11.
Graphene–oxide hybrid structures offer the opportunity to combine the versatile functionalities of oxides with the excellent electronic transport in graphene. Understanding and controlling how the dielectric environment affects the intrinsic properties of graphene is also critical to fundamental studies and technological development of graphene. Here we review our recent effort on understanding the transport properties of graphene interfaced with ferroelectric Pb(Zr,Ti)O3 (PZT) and high-κ HfO2. Graphene field effect devices prepared on high-quality single crystal PZT substrates exhibit up to tenfold increases in mobility compared to SiO2-gated devices. An unusual and robust resistance hysteresis is observed in these samples, which is attributed to the complex surface chemistry of the ferroelectric. Surface polar optical phonons of oxides in graphene transistors play an important role in the device performance. We review their effects on mobility and the high source-drain bias saturation current of graphene, which are crucial for developing graphene-based room temperature high-speed amplifiers. Oxides also introduce scattering sources that limit the low temperature electron mobility in graphene. We present a comprehensive study of the transport and quantum scattering times to differentiate various scattering scenarios and quantitatively evaluate the density and distribution of charged impurities and the effect of dielectric screening. Our results can facilitate the design of multifunctional nano-devices utilizing graphene–oxide hybrid structures.  相似文献   

12.
Based on the pseudopotential scheme, the effect of nitrogen concentration on electronic properties of zinc-blende GaAs1−xNx alloys has been investigated for small amounts of N. The agreement between our calculated electronic band parameters and the available experimental data is generally reasonable. In agreement with recent experiment, we find that the incorporation of a few percent of N in the material of interest reduces substantially the fundamental band-gap energy and narrows the full valence band width. The electron and heavy hole effective masses are found to decrease rapidly when adding a concentration of nitrogen less than 0.005 in GaAs. This may increase the mobility of electrons and heavy holes providing new opportunities regarding the transport properties. The information derived from the present study shows that GaAs1−xNx (0?x?0.05) properties may have an important optoelectronic applications in infrared and mid-infrared spectral regions.  相似文献   

13.
The demand for cheaper, nontoxic and earth-abundant materials as absorbing layer for solar cell is immensely needed to replace scarce, toxic and expensive one. In this regard, chalcogenide materials have considerably attracted the attention of a lot of researchers because of showing a great potential for different applications. Stibnite (Sb2S3), a chalcogenide binary material is considerably investigated for exploiting its potential for different energy technologies being a less toxic, abundantly available, stable and efficient, which are the fundamentals for sustainability as well as to realize the dream of green energy. In this study, theoretical calculations of the structural, electronic and optical properties of stibnite (Sb2S3) crystal structure are presented using the full potential (FP) linearized augmented plane wave (LAPW) framed within density functional theory (DFT). To incorporate the exchange-correlation part in the total energy functional, besides the local density approximation (LDA), Wu-Cohen parameterized generalized gradient approximation (WC-GGA), Perdew–Burke–Ernzerhof parameterized generalized gradient approximation (PBE-GGA), and Perdew–Burke–Ernzerhof generalized gradient approximation for solids and surfaces (PBEsol-GGA) are used for the calculations of the structural parameters, where the Trans-Blaha approach of the modified Becke–Johnson (TB-mBJ) potential is used to get more reliable results for the fundamental band gap energy value. These calculations are performed by involving spin-orbit coupling (SOC) contribution. Additionally, optical properties, such as imaginary and real parts of the dielectric function, optical conductivity, absorption coefficient, refractive index, reflectivity, and electron energy loss function are analyzed. Our first-principles calculations show that Wu-Cohen GGA (WC-GGA) reproduces results for lattice parameters comparable to the experimental measurements. The obtained results of the band gap energy and optical properties with TB-mBJ potential are also closer to the experimental data and, endorse its potentiality for the photovoltaics applications.  相似文献   

14.
The effect of lanthanum (La) doping on ferroelectric and piezoelectric properties of lead zirconate titanate (PZT) sample has been investigated. Pb1?x La x Zr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.10 were prepared by the sol–gel technique. Raman and Fourier transforms infrared spectroscopy have been employed to understand the structural modification due to ionic size mismatch. Raman spectra show the existence of both rhombohedral and tetragonal crystal symmetries. It also shows the dielectric relaxation with increase in La concentration in the sample. The increase in lattice strain due to La doping increases the remnant polarization and coercive field. The linear piezoelectric coefficient increases with the increase in La concentration. It reveals that La-substituted PZT is a better candidate for piezoelectric sensor applications as compared to that of PZT.  相似文献   

15.
Effects of compressive stress on the ferroelectric properties of ceramics in PZT–PZN system were investigated. The ceramics with a formula (1−x)Pb(Zr1/2Ti1/2)O3xPb(Zn1/3Nb2/3)O3 or (1−x)PZT–(x)PZN (x = 0.1–0.5) were prepared by a conventional mixed-oxide method. The ferroelectric properties under the compressive stress of the PZT–PZN ceramics were observed at the stress levels up to 170 MPa using a compressometer in conjunction with a modified Sawyer–Tower circuit. It was found that with increasing compressive stress the area of the ferroelectric hysteresis (PE) loops, the saturation polarization (Psat), the remnant polarization (Pr), and the coercive field (Ec) decreased. These results were interpreted through the non-180° ferroelastic domain switching processes.  相似文献   

16.
The molecular structures, electronic structures and absorption characters of–CH3,–C2H5,–CF3,–C2F5 substituted 5-(2-pyridyl) pyrazolate boron complexes were presented by density functional theory (DFT). The ground state structures of the title complexes were optimised at B3LYP/6-31G* level. In addition, a time dependent density functional theory (TD-DFT) method is applied to investigate the properties of absorption spectra and electronic transition mechanism which were based on the ground state geometries. The results show that the chemical bond formed between nitrogen in the pyridyl ring and boron can be attributed to coordination effect. The boron centre has a typical tetrahedral geometry with the adjacent atoms. The calculated absorption wavelengths for–CF3,–C2F5 substituted 5-(2-pyridyl) pyrazolate boron complexes are in good agreement with the experimental data.  相似文献   

17.
The structural, electronic, and optical properties of multiferroic bismuth ferrite (BiFeO3) are investigated using density functional theory within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experimental data. The electronic structure shows that BiFeO3 has an indirect (very close to direct) band gap of 1.06 eV. The complex dielectric function, absorption spectra, refractive index, extinction coefficient, energy-loss spectrum and reflectivity are calculated, and the results are compared with the available experimental data. Finally, the optical properties of BiFeO3 are discussed based on the band structure calculations.  相似文献   

18.
ABSTRACT

In this study, we have computed the structural, electronic and half-metallic ferromagnetic properties of Ca1?xTixO compounds at concentrations x?=?0.125, 0.25, 0.5 and 0.75 by employing the first-principle approaches of density functional theory. The generalised gradient approximation of Wu and Cohen (GGA-WC) is used to calculate the structural parameters, whereas the electronic structures and magnetic properties are characterised by the accurate Tran–Blaha-modi?ed Becke–Johnson potential (TB-mBJ). The lattice constant, bulk modulus and indirect gap of CaO are in good agreement with other theoretical and experimental results. The Ca0.25Ti0.75O at x?=?0.75 has metallic ferromagnetic nature. The Ca0.875Ti0.125O, Ca0.75Ti0.25O and Ca0.50Ti0.50O compounds have total magnetic moments of 2?μB per Ti atom with a half-metallic character, a spin polarisation of 100% and a large half-metallic gap of 1.345?eV for x?=?0.125. Therefore, the Ca1?xTixO material with a low concentration of Ti is a true half-metallic ferromagnet and seems to be a promising candidate for semiconductor spintronics.  相似文献   

19.
The pressure-dependence of mechanical, electronic and thermodynamic properties of metastable (L12 type) and stable (D023 type) Al3Zr precipitations in Al–Li alloys were investigated by employing the first-principle calculations. The calculated equilibrium parameters are in good agreement with experimental and previous calculation results available. Elastic properties including bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal anisotropic index are determined by Voigt–Reuss–Hill approximation. It is found that for both phases, external pressure can improve the mechanical stability, ductility and plasticity. The electronic structures are determined to reveal the bonding characteristics of both phases. In addition, both phonon method and Gibbs program have been proposed to predict thermodynamic properties of two phases. All of these results can help to have a better understanding of the physical and chemical properties of Al3Zr precipitations in Al–Li alloy. And can offer theoretical guidance for the weight lighting, energy conservation and emissions reduction in the design of new aluminium alloys.  相似文献   

20.
《Current Applied Physics》2019,19(7):804-810
Multi-layered structures, composed of thin films from materials with different compositions or physical properties, represents a way to obtain enhanced properties or even new functionalities. In this work, lead zirconate titanate PbZrxTi1-xO3 (PZT; x = 0.20, 0.52, 0.80) multilayers were grown by pulsed laser deposition (PLD) on a single crystal strontium titanate (SrTiO3, STO) substrate, using a strontium ruthenate (SrRuO3, SRO) film as buffer layer for epitaxial growth, and also as back electrode.Up and down multi-layers were grown and their physical and structural properties were compared, up being the structure in which Zr concentration was varied from 20% near the STO substrate to 80% at the surface, while down is for the structure in which the Zr concentration starts with 80% near the substrate and ends with 20% at the surface. It was found that the electric and pyroelectric properties of the two graded structures are significantly different. The up structure presents electric properties that are comparable with those of single composition PZT films while the properties of the down structure are deteriorated, especially in terms of the leakage current magnitude. Pyroelectric signal could be measured only for the up structure. These differences were attributed to larger density of structural defects in the down structure compared to the up one. This is due to the different growth sequence: up structure starts with tetragonal PZT on cubic substrate (lower lattice mismatch, 1.1%) while down structure starts with rhombohedral PZT on cubic substrate (larger lattice mismatch, almost 5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号