首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

It is shown that as a result of the Greenwood-Foreman-Rimmer loop punching mechanism applied for helium bubble growth in nickel implanted with 5 keV He+ ions at 273 K, a considerable amount of helium remains outside the bubbles which are visible in a transmission electron microscope (TEM). It is also shown that even when it is assumed that there is an energy barrier with an upper limit equal to the formation energy of a self-interstitial atom, not all implanted helium can be accumulated in the bubbles below the critical dose for blistering.

The experimental observation of bubble growth in a helium pre-implanted nickel specimen during 1 MeV e? irradiation may demonstrate that indeed a significant amount of helium remains between the bubbles visible in TEM.  相似文献   

2.
3.
Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irradiated on the (110) end face by low-energy (E=17 keV) He+ ions at doses ranging from 5×1016 to 4.5×1017 cm−2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3×1017 cm−3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nanopores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at 600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm−1 discovered in the helium-doped a-Si layer are identified as low-energy He+ ion tracks.  相似文献   

4.
P. Changizian  H. K. Zhang 《哲学杂志》2015,95(35):3933-3949
This study focuses on investigation into the effect of helium implantation on microstructure evolution in Inconel X-750 superalloy during dual-beam (Ni+/He+) irradiation. The 1 MeV Ni+ ions with the damage rate of 10?3 dpa/s as well as 15 keV He+ ions using rate of 200 appm/dpa were simultaneously employed to irradiate specimens at 400 °C to different doses. Microstructure characterization has been conducted using high-resolution analytical transmission electron microscopy (TEM). The TEM results show that simultaneous helium injection has significant influence on irradiation-induced microstructural changes. The disordering of γ′ (Ni3 (Al, Ti)) precipitates shows noticeable delay in dose level compared to mono heavy ion irradiation, which is attributed to the effect of helium on promoting the dynamic reordering process. In contrast to previous studies on single-beam ion irradiation, in which no cavities were reported even at high doses, very small (2–5 nm) cavities were detected after irradiation to 5 dpa, which proved that helium plays crucial role in cavity formation. TEM characterization also indicates that the helium implantation affects the development of dislocation loops during irradiation. Large 1/3 〈1?1?1〉 Frank loops in the size of 10–20 nm developed during irradiation at 400 °C, whereas similar big loops detected at higher irradiation temperature (500 °C) during sole ion irradiation. This implies that the effect of helium on trapping the vacancies can help to develop the interstitial Frank loops at lower irradiation temperatures.  相似文献   

5.
The influence of helium, introduced by the 10B(n, α)7Li reaction, on the evolution of defect structure in copper containing a few hundred ppm boron has been studied by detailed positron lifetime and two-photon angular correlation measurements, supplemented by TEM studies. In the as-irradiated state of Cu-B, two lifetime components have been resolved. The shorter lifetime, τ1, = 167 ps of 97% intensity, has been understood as due to positron trapping at small helium-vacancy complexes, while the longer lifetime τ2 = 450 ps of 3% intensity is explained as due to helium-free voids. Marked changes in the annihilation characteristics observed at 670 K are interpreted in terms of the nucleation of microbubbles, controlled by thermally activated helium migration to vacancy traps. Corroborative evidence for the onset of helium clustering is obtained from the change in the average size of positron traps as deduced from the smearing of the measured angular correlation spectra. Helium bubbles and helium-free voids coexisting in the system have been distinguished by a three-component analysis of the lifetime spectra. Bubbles are found to be stable beyond the temperature of dissociation of voids. The size and concentration of bubbles, determined independently by TEM measurements, are in accordance with the positron annihilation results in the growth stage. The observed positron lifetime at higher annealing temperatures has been analysed by relating the annihilation rate to helium atom density and helium pressures in bubbles evaluated. These pressures are in satisfactory agreement with the estimates of equilibrium pressures, leading to the conclusion that bubble relaxation occurs by the mechanism of thermal vacancy condensation.  相似文献   

6.
Abstract

Helium clustering in alpha irradiated copper has been investigated by positron annihilation spectroscopy. Pure copper samples have been homogeneously helium implanted using a cyclotron, yielding helium concentrations of 100 appm and 400 appm. Post-implantation positron lifetime and Doppler broadened annihilation lineshape measurements have been carried out on these Cu samples as a function of isochronal annealing temperature. An annealing stage observed in the isochronal annealing curve viz., a marked reduction in the resolved lifetime τ2 and an increase of its intensity I 2, is explained as due to the formation of helium bubble embryos. At higher annealing temperatures, τ2 corresponding to helium bubbles increases and saturates while its intensity I 2 decreases, indicating an increase in the size of the bubble with a concomitant decrease in the bubble concentration. This stage is interpreted to be the bubble growth stage. From an analysis of positron lifetime parameters in the growth stage, helium stom density, bubble size and bubble concentration have been deduced at various annealing temperatures. The bubble characteristics are found to be affected by the helium dose. The present results on direct helium implanted Cu are compared with those of our earlier study on n-irradiated Cu-B, where helium was introduced using 10B(n, α)7 Li reaction.  相似文献   

7.
Large dimensional expansion has been observed at room temperature in erbium metal films implanted at room temperature with high fluences of helium. The interferometrically measured film thickness increases linearly with fluence up to a critical dose of 3 × 1017 He+/cm2 (E = 160 keV) and is superlinear at higher fluences. Annealing at 400°C causes a reduction of the induced expansion for fluences below the critical dose without apparent release of helium. Annealing of samples implanted to fluences greater than 3.5 × 1017 He+/cm2 causes accentuated expansion which is accompanied by formation and rupture of bubbles at the film surface.  相似文献   

8.
Yi-Peng Li 《中国物理 B》2021,30(8):86109-086109
The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy (TEM) during 30 keV He+ irradiation (at 673 K and 1173 K) and post-irradiation annealing (after 30 keV He+ irradiation with the fluence of 5.74×1016 He+/cm2 at 673 K). Both He+ irradiation and subsequently annealing induced the initiation, aggregation, and growth of helium bubbles. Temperature had a significant effect on the initiation and evolution of helium bubbles. The higher the irradiation temperature was, the larger the bubble size at the same irradiation fluence would be. At 1173 K irradiation, helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size, which would induce the formation of microcracks. At the same time, the geometry of helium bubbles changed from sphericity to polyhedron. The polyhedral bubbles preferred to grow in the shape bounded by {100} planes. After statistical analysis of the characteristic parameters of helium bubbles, the functions between the average size, number density of helium bubbles, swelling rate and irradiation damage were obtained. Meanwhile, an empirical formula for calculating the size of helium bubbles during the annealing was also provided.  相似文献   

9.
Indian Reduced Activation Ferritic Martensitic steel is implanted with 130 keV helium ions to a fluence of 5 × 1014 and 1 × 1016 ions/cm2 and investigated using positron annihilation spectroscopy. The samples were characterised by defect sensitive S and W-parameters using depth resolved slow positron beam. A dose dependency is observed in the nucleation and growth of helium bubbles with annealing temperature. An experimental evidence for the migration of smaller helium-vacancy complexes is observed via the variation in thickness/width of irradiated layer with temperature. The S–W plot clearly shows the regions corresponding to defect annealing, bubble nucleation and growth.  相似文献   

10.
Abstract

The novel application of vacuum ultra-violet absorption spectroscopy and electron energy loss spectroscopy to helium bubbles in metals is presented. These measurements, carried out on thin aluminium films containing different concentrations of helium and various bubble size distributions, were aimed at determining the density (and thus pressure) of helium in bubbles by observing the shift and broadening of the IS-2P transition in the helium. The data coupled with a theoretical model developed by the authors (see following paper) indicate densities as high as 1023 He cm?3 for specimens containing small bubbles. Data are also presented on the effect that annealing and cooling have on these spectra. The annealing experiments give rise to fairly complex changes in absorption peak structure but with a general shift towards the unperturbed resonance line. The cooling experiment gives rise to a further shift and a narrowing of the absorption spectrum on cooling to 77 K which is tentatively identified as the liquid/solid transition in the helium. Finally, fluorescence spectrum of an Al/He specimen excited with low energy electrons is presented.  相似文献   

11.
Mössbauer effect measurements have been performed using sources of119Sb implanted in W without and with post-implanted helium. Each of the sources was subjected to an isochronal annealing sequence in order to study vacancy trapping, helium decoration and recovery of damage. Four sites have been identified for Sb implanted in tungsten; one of these corresponds with substitutional Sb atoms, two others are assigned to Sb atoms associated with vacancies, while the last one can be either vacancy or impurity associated. The development of site occupation as a function of annealing temperature is in accordance with the one-interstitial model. Injection of 2·1016 He/cm2 leads to nucleation of helium bubbles. Helium atoms that are released from these bubbles at about 1300 K are retrapped by Sb atoms to form new bubbles.  相似文献   

12.
It is shown that the Lie and the Noether symmetries of the equations of motion of a dynamical system whose equations of motion in a Riemannian space are of the form [(x)\ddot]i+Gjki[(x)\dot]j[(x)\dot] k+f(xi)=0{\ddot{x}^{i}+\Gamma_{jk}^{i}\dot{x}^{j}\dot{x} ^{k}+f(x^{i})=0} where f(x i ) is an arbitrary function of its argument, are generated from the Lie algebra of special projective collineations and the homothetic algebra of the space respectively. Therefore the computation of Lie and Noether symmetries of a given dynamical system in these cases is reduced to the problem of computation of the special projective algebra of the space. It is noted that the Lie and Noether symmetry vectors are common to all dynamical systems moving in the same background space. The selection of the vectors which are Lie/Noether symmetries for a given dynamical system is done by means of a set of differential conditions involving the vectors and the potential function defining the dynamical system. The general results are applied to a number of different applications concerning (a) The motion in Euclidean space under the action of a general central potential (b) The motion in a space of constant curvature (c) The determination of the Lie and the Noether symmetries of class A Bianchi type hypersurface orthogonal spacetimes filled with a scalar field minimally coupled to gravity (d) The analytic computation of the Bianchi I metric when the scalar field has an exponential potential.  相似文献   

13.
In the present paper two examples of self-organization in solids under irradiation are considered on the basis of original mechanisms, namely, the ordering of voids in void lattices under high temperature irradiation and the alignment of gas bubbles in bubble lattices under low-temperature gas atom implantation. The ordering of cavities (i.e. voids or gas bubbles) is proposed to arise due to a dissipative interaction between cavities induced by the interstitial dislocation loop absorption and punching, respectively, which represent anisotropic mechanisms of atomic transport.  相似文献   

14.
The boundaries between different phases of condensed helium provide an interesting testing ground for studying ions in a quantum matter matrix. Here we consider the simplest positive and negative ions in helium — snowballs and electron bubbles, respectively — being trapped at the liquid-liquid interface of phaseseparated3He–4He mixtures and at the liquid-solid interface of4He. A comparison of experimental results for the trapping with predictions of the snowball and the bubble models shows that the models are in qualitative accord with the observations, but disagree in detail. It is suggested to use such studies for refinements of the ion models. In addition multielectron bubbles (=mesoscopic ions) and electrons on helium films are briefly discussed.  相似文献   

15.
Well-annealed 316L stainless steel was first cold rolled to 10% and 20% reductions in thickness and then irradiated by 50 keV He+ to a dose of 1 × 1020 He+/m2 at room temperature. Thermal desorption spectroscopy was used to investigate the helium desorption behaviour at different helium trapping states. The results showed that high-density dislocations had stronger inhibitory effect for helium desorption at temperatures from 800 to 1200 K. Positron annihilation Doppler broadening spectroscopy measurements were used to investigate the distribution of helium irradiation-induced defects. The SE and ΔSE plots clearly demonstrated that the helium irradiation-induced defects were trapped and restricted in motion by dislocations. The interaction between dislocations and helium irradiation-induced defects in deformed 316L stainless steel was investigated.  相似文献   

16.
实验采用300 keV的He2+辐照6H-SiC,辐照温度分别为室温,450,600和750 ℃,辐照剂量范围为1×1015–1×1017 cm-2,辐照完成后对样品进行拉曼散射和紫外可见透射光谱测试与研究. 这两种分析方法的实验结果表明,He离子辐照产生的缺陷以及缺陷的恢复与辐照剂量和辐照温度有着直接关系. 室温下辐照会使晶体出现非晶化,体现在拉曼特征峰消失,相对拉曼强度达到饱和(同时出现了较强的Si-Si峰);高温下辐照伴随着晶体缺陷的恢复过程,当氦泡未存在时,高温辐照很容易导致Frenkel对、缺陷团簇等缺陷恢复,当氦泡存在时,氦泡会抑制缺陷恢复,体现在相对拉曼强度和相对吸收系数曲线斜率的变化趋势上. 本文重点讨论了高温辐照情况下氦泡对缺陷聚集与恢复的影响,并与高温下硅离子辐照碳化硅结果进行了对比. 关键词: 6H-SiC 氦泡 拉曼散射光谱 紫外可见透射光谱  相似文献   

17.
A combination of X-ray diffraction, cross-sectional transmission electron microscopy (XTEM), and Raman spectroscopy was used to study the effects of irradiation with swift heavy ions on helium and hydrogen co-implanted silicon.<100>-oriented silicon wafers were co-implanted with 30 keV helium to a dose of 3×1016He+/cm2 and 24 keV protons to a dose of 2×1016 H+/cm2. Moreover, selected helium and hydrogen co-implanted Si wafers were irradiated with 94 MeV xenon. After He and H co-implantation and Xe-irradiation, the wafers were annealed at a temperature of 673 K for 30 min. The damage region of the wafers was examined by the XTEM analysis. The results reveal that most of the platelets are aligned parallel to the (100) plane in the He and H co-implanted Si. However, majority of the platelets lie in<texlscub>111</texlscub>planes after Xe irradiation. Blisters do not occur on the sample surface after Xe irradiation. Raman results reveal that the intensities of both SiH2 and V2H6 modes increase with the increase in the dose of Xe. A possible explanation is that strong electronic excitation during Xe irradiation produces annealing effect, which reduces both lattice damage and the out-of-plane tensile strain.  相似文献   

18.
The surface layers of single-crystal silicon Si(001) substrates subjected to plasma-immersion implantation with 2- and 5-keV helium ions to a dose of 5 × 1017 cm–2 were probed via grazing incidence small-angle X-ray scattering and transmission electron microscopy. A surface layer formed by helium ions was found to possess a multilayer structure, wherein the upper layer is amorphous silicon, being on top of a sublayer with helium bubbles and a sublayer with a disturbed crystal structure. The in-depth electron density distribution, as well as the concentration and pore-size distribution, were established. The average pore sizes of bubbles at the above implantation energies are 4 nm and 8 nm, respectively.  相似文献   

19.
Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schr?dinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs “dynamically” from the CDFT based approach under similar computational constraints.  相似文献   

20.
Radiation-stimulated interfacial gas release in an Ag-glass thin-film system is investigated. It is established that under proton irradiation hydrogen accumulates in bubbles, which are the interfacial gas reservoirs, at the interface. The gas bubbles formed are studied and their parameters are determined by optical microinterferometry. It is shown that 15–50 μm in radius bubbles contain 2×109–2×1011 hydrogen molecules. Hydrogen is extracted from the reservoir by rupturing the thin-film dome of a bubble with a 2×1013 W·cm−2 laser beam. Zh. Tekh. Fiz. 69, 112–115 (February 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号