首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the role of Bose-Einstein condensation (BEC) of anti-kaons on the equation of state (EoS) and other properties of compact stars. In the framework of relativistic mean field model we determine the EoS for β-stable hyperon matter and compare it to the situation when anti-kaons condense in the system. We observe that anti-kaon condensates soften the EoS, thereby lowering the maximum mass of the stars. We also demonstrate that the presence of antikaon condensates in the high density core of compact stars may lead to a new mass sequence beyond white dwarf and neutron stars. The limiting mass of the new sequence stars is nearly equal to that of neutron star branch though they have distinctly different radii and compositions. They are called neutron star twins.  相似文献   

2.
Thep-state pairing idea proposed recently to explain the ferromagnetism of ZrZn2 is described in more detail, and the underlying soft-mode hypothesis is examined in relation with experiments, in particular the discovery of antiferromagnetism in TiBe2. The key result, namely an electron-phonon contribution to the Stoner factor given essentially by the mass enhancement factor, is used to explain the behaviour of the Curie pointT m and to predict an isotope effect.p-state superconductivity with a transition temperature determined by is predicted in TiBe2 and, above the critical pressure whereT m =0, also in ZrZn2.Work in La Jolla supported by NSF/DMR 77-08469.  相似文献   

3.
We study finite-time blow-up for pseudo-relativistic Hartree- and Hartree-Fock equations, which are model equations for the dynamical evolution of white dwarfs. In particular, we prove that radially symmetric initial configurations with negative energy lead to finite-time blow-up of solutions. Furthermore, we derive a mass concentration estimate for radial blow-up solutions. Both results are mathematically rigorous and are in accordance with Chandrasekhar’s physical theory of white dwarfs, stating that stellar configurations beyond a certain limiting mass lead to “gravitational collapse” of these objects. Apart from studying blow-up, we also prove local well-posedness of the initial-value problem for the Hartree- and Hartree-Fock equations underlying our analysis, as well as global-in-time existence of solutions with sufficiently small initial data, corresponding to white dwarfs whose stellar mass is below the Chandrasekhar limit.  相似文献   

4.
5.
The electronic structures of VNi3, MnPd3 and MoPd3 are studied in the paramagnetic phase using the method of orthogonalized linear combination of atomic orbitals. The Stoner criterion is applied to predict magnetic ordering in these compounds. VNi3 has a very low density of states at the Fermi level and therefore does not satisfy the Stoner criterion for magnetic ordering. This is in agreement with the magnetic susceptibility data. Magnetic ordering predicted for MnPd3 is in agreement with the observed antiferromagnetic phase transition in this compound. The Stoner criterion is not satisfied for MoPd3 and no experimental data are available for the ordered phase.  相似文献   

6.
The physics of a quantum dot with electron–electron interactions is well captured by the so called “Universal Hamiltonian” if the dimensionless conductance of the dot is much higher than unity. Within this scheme interactions are represented by three spatially independent terms which describe the charging energy, the spin-exchange and the interaction in the Cooper channel. In this paper we concentrate on the exchange interaction and generalize the functional bosonization formalism developed earlier for the charging energy. This turned out to be challenging as the effective bosonic action is formulated in terms of a vector field and is non-abelian due to the non-commutativity of the spin operators. Here we develop a geometric approach which is particularly useful in the mesoscopic Stoner regime, i.e., when the strong exchange interaction renders the system close to the Stoner instability. We show that it is sufficient to sum over the adiabatic paths of the bosonic vector field and, for these paths, the crucial role is played by the Berry phase. Using these results we were able to calculate the magnetic susceptibility of the dot. The latter, in close vicinity of the Stoner instability point, matches very well with the exact solution [I.S. Burmistrov, Y. Gefen, M.N. Kiselev, JETP Lett. 92 (2010) 179].  相似文献   

7.
Stoner theory predicts a complete collapse of the local magnetic moment at the Curie temperature. In this paper, the effect of local moment formation in the non-magnetic state is discussed. The energy between the magnetic and non-magnetic state is found to be considerably reduced. This observation is consistent with the low observed magnetic ordering temperatures of the 3d metals when compared to the values derived from band theory.  相似文献   

8.
For m 2 < a 2 + q 2, with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr–Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4 rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.  相似文献   

9.
We measure thermodynamic magnetization of a low-disordered, strongly correlated two-dimensional electron system in silicon. Pauli spin susceptibility is observed to grow critically at low electron densities—behavior that is characteristic of the existence of a phase transition. A new, parameter-free method is used to directly determine the spectrum characteristics (Landé g-factor and the cyclotron mass) when the Fermi level lies outside the spectral gaps and the inter-level interactions between quasiparticles are avoided. It turns out that, unlike in the Stoner scenario, the critical growth of the spin susceptibility originates from the dramatic enhancement of the effective mass, while the enhancement of the g-factor is weak and practically independent of the electron density.  相似文献   

10.
托马斯进动的发现对电子自旋概念的确立有重要意义.然而,其物理图像及结论多是采用洛伦兹变换进行连续微分推导而出,过程较为繁杂,掌握难度也较大,在原子物理学教学过程中很难描述.本文通过狭义相对论中长度在运动方向缩短的概念,从电子绕行原子实一周时,在原子实坐标系和电子随动坐标系中最终角度差的积分效应出发,非常简单的论证了1/...  相似文献   

11.
Ni3Al and Ni3Ga are closely related materials on opposite sides of a ferromagnetic quantum critical point. The Stoner factor of Ni is virtually the same in both compounds and the density of states is larger in Ni3Ga. Thus in Stoner theory it should be more magnetic, and in local-density approximation (LDA) calculations it is. However, experimentally it is a paramagnet, while Ni3Al is an itinerant ferromagnet. We show that critical spin fluctuations are stronger in Ni3Ga, due to weaker q dependence of the susceptibility, and this effect is enough to reverse the trend. The approach combines LDA calculations with Landau theory and the fluctuation-dissipation theorem using the same momentum cutoff for both compounds. The calculations provide evidence for strong, beyond LDA, spin fluctuations associated with the critical point in both materials, but stronger in Ni3Ga than in Ni3Al.  相似文献   

12.
Based on a new screening Coulomb model, this paper discusses the effect of electron screening on proton capture reaction of 23Mg. The derived result shows that, in some considerable range of stellar temperatures, the effect of electron screening on resonant reaction is prominent; on the non-resonant reaction the effect is obvious only in the low stellar temperatures. The reaction rates of ^23Mg(p,γ) ^24Al would increase 15%-25% due to the fact that the electron screening are considered in typical temperature range of massive mass white dwarfs, and the results undoubtedly affect the nucleosynthesis of some heavier nuclei in massive mass white dwarfs.  相似文献   

13.
In this Letter,we examine the phantom energy accretion onto a Kehagias-Sfetsos black hole in Horava-Lifshitz gravity.To discuss the accretion process onto the black hole,the equations of phantom flow near the black hole have been derived.It is found that mass of the black hole decreases because of phantom accretion.We discuss the conditions for critical accretion.Graphically,it has been found that the critical accretion phenomena is possible for different values of parameters.The results for the Schwarzschild black hole can be recovered in the limiting case.  相似文献   

14.
We analytically investigate gravitational radiation induced by a test particle falling into an extreme Kerr black hole. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequencym/(2M), wherem is an azimuthal eigenvalue andM is the mass of the black hole. we find the radiated energy diverges logarithmically in time. Then we evaluate the back reaction to the black hole by appealing to the energy and angular momentum conservation laws. We find the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from the non-extreme case, while the contribution of the test particle is to decrease it.  相似文献   

15.
The energy conditions of general relativity are satisfied by all experimentally detected fields. We discuss their interpretation and application to charged spheres. It is found that they prevent the existence of naked singularities, and demand that the effective gravitational mass be everywhere non-negative. We focus on the emergence of limiting configurations-sources of the Reissner-Nordström field that have vanishing effective mass everywhere within the sphere. These configurations have a number of interesting features. Among them we find that, near the center, the limiting form of the equation of state is+3p=0. Notably this is the only equation of state consistent with the existence of zero-point electromagnetic field, and it has been considered in different contexts, in discussions of cosmic strings and in derivations of (3+1) properties of matter from (4+1) geometry. The consistency of these configurations with the Einstein-Maxwell equations is shown by means of explicit examples. These configurations can be interpreted as due to selfinteracting gravitational effects of the zero-point electromagnetic field.  相似文献   

16.
A local environment approach is used to calculate the sizes of the magnetic moments in ordered Fe3Al. A simple model based on a LCAO model and Stoner theory gives results in good agreement with experiment. Calculations were performed self-consistently using the recursion method. The role of the aluminium is investigated and it is shown that it is essential to include the aluminium sp band but the results are insensitive to its details.  相似文献   

17.
Several characteristics of fission accompanied by long range alpha particles (LRA) have been studied in the thermal neutron induced fission of235U. The kinetic energies of fission fragments and the LRA were measured with a back-to-back ionization chamber and semiconductor detectors respectively. The kinetic energies of the two fragments and the LRA in LRA fission, along with the energies of pair fragments in the normal binary fissions, were recorded event by event on a magnetic tape by means of a four-parameter data acquisition system. The data were analysed to study the dependence of different quantities in LRA fission on the fragment mass ratio, LRA energy and the total kinetic energy of the fission fragments. It is seen that the most probable energy of LRA increases significantly for near symmetric mass divisions. The total kinetic energy for all mass ratios in LRA fission is found to be (2.6±0.7) MeV larger than that in binary fission. The difference in the total kinetic energies in LRA and binary fissions is seen to be dependent on mass ratio. This result may suggest that the scission configuration in LRA fission is different for different mass ratios. Correlations between the fission fragment and LRA energies have been studied for several mass ratios. It is seen that the most probable fragment kinetic energyĒ k varies nearly linearly with the LRA energyE a for various mass divisions but the variation of the most probable LRA energyĒ a with fragment kinetic energyE k is found to deviate from linearity for several mass ratios. From a least square fit to the variation ofĒ k withE a it is found that the slope ( k/dEa) increases with the increase in mass ratio. The present results are discussed to arrive at a better understanding of the scission configuration in the fission accompanied by LRA emission.  相似文献   

18.
The concept of limiting mass, introduced by Chandrasekhar in case of white dwarfs, plays an important role in the formation and stability of compact objects such as neutron stars and black holes. Like white dwarfs, neutron stars have their own mass limit, and a compact configuration would progress from one family to the next, more dense one once a mass limit is crossed. The mass limit of neutron stars depends on the nature of nuclear forces at very high density, which has so far not been determined conclusively. This article reviews how observational determinations of the properties of neutron stars are starting to impose significant constraints on the state of matter at high density.  相似文献   

19.
We derive exact relations that connect the universal C/k4-decay of the momentum distribution at large k with both thermodynamic properties and correlation functions of two-component Fermi gases in one dimension with contact interactions. The relations are analogous to those obtained by Tan in the three-dimensional case and are derived from an operator product expansion of the one- and two-particle density matrix. They extend earlier results by Olshanii and Dunjko (2003) [24] for the bosonic Lieb–Liniger gas. As an application, we calculate the pair distribution function at short distances and the dimensionless contact in the limit of infinite repulsion. The ground state energy approaches a universal constant in this limit, a behavior that also holds in the three-dimensional case. In both one and three dimensions, a Stoner instability to a saturated ferromagnet for repulsive fermions with zero range interactions is ruled out at any finite coupling.  相似文献   

20.
A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction and number density. The model describes particle nucleation, surface growth, and oxidation. A detailed kinetic mechanism is considered for the gas phase and the effect of considering radiation heat losses is also evaluated. Simulations were done for a range of conditions that produce low-to-significant amounts of soot using three strategies: first by changing the strain rate imposed on the flow field, second, by changing the oxygen content in the oxidant stream, and third, by changing the pressure. Additionally, the effect of the transport model chosen was analysed. The results showed that, for the flames studied and within the limits of the present work, the soot and gas radiation terms are of primary importance for numerical simulations. Additionally, it was shown that the soot mass and thermodynamic properties coupling terms are, in general, a second-order effect, with an importance that increases as soot amount increases. As a general recommendation, the radiation terms have always to be considered, whereas full coupling has to be employed only when the soot mass fraction, YS, is equal to or larger than 0.008. If a higher precision is required, with errors less than 1%, full coupling should be taken into account for YS ≥ 0.002. For lower soot amounts, the coupling through soot mass and thermodynamic properties may be neglected as a first approximation, but an error on the total mass conservation will be present. Additionally, discrepancies from considering different transport models (detailed or simplified) are larger than those found from not fully coupling the phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号