首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we investigate the spectroscopy properties of neodymium doped tungsten–tellurite glasses prepared in ambient and O2-rich atmospheres. A conversion of TeO4 to TeO3 units was caused by the addition of Nd3+ into the glass, which was confirmed by absorption spectra and by Judd–Ofelt parameter behavior. The relaxation of the 4F3/2 level is dominated by radiative decay and cross-relaxation between Nd3+ and Nd3+ ions. The energy transfer from Nd3+ to the hydroxyl group is negligible when compared to the cross-relaxation. The luminescence quantum efficiency values of the 4F3/2 level decreases as the Nd3+ concentration increases, independently if determined by the Judd–Ofelt method or by the thermal lens technique. The observed reduction in the IR absorption associated to OH groups was not effective to improve the luminescence quantum efficiency.  相似文献   

2.
The elastic properties of oxyfluoride tellurite glasses in the ternary system ZnF2-WO3 -TeO2 were analyzed and their changes when ZnF2 was replaced with TeO2 or WO3 were predicted. The most significant structural and compositional parameters were evaluated on the basis of the well known models and approaches existing in the field and correlated with both elastic moduli and Poisson's ratio. It has been found that the molar volume, fractal bond connectivity, first-order stretching force constant of the Te–O and W–O covalent bonds and dissociation energy per unit volume of the constituent components play an important role in determining and predicting of elastic moduli. The semi-empirical formula of Abd El-Moneim and Alfifi, which correlates bulk modulus with the ratio between packing density and mean atomic volume, appears to be valid for the investigated oxyfluoride tellurite glasses. On the basis of Makishima-Mackenzie's theory, the agreement between the theoretically calculated and experimentally measured values is excellent for shear and Young's moduli and satisfactory for Poisson's ratio as well as bulk and longitudinal moduli. The slight divergence between the theoretical and experimental values was interpreted in terms of the basic structural units that constituting the glass network.  相似文献   

3.
We have prepared Er^3 -doped borotellurite glasses using conventional melting and quenching method.The absorption spectrum analysis is performed on the basis of Judd-Ofelt theory.The effects of B2O3 on the spectroscopic parameters such as intersity parameters,line strengths of electric-dipole transitions,and sopontaneous emission probability are discussed.  相似文献   

4.
The effect of B content on the structure, soft magnetic properties, and high frequency characteristics of as-deposited FeCoB-Al2O3 nanogranular films fabricated by radio frequency magnetron co-sputtering was studied in this work. The introduction of B into the FeCo-Al2O3 films leads to a refinement of granular microstructure. The FeCoB-Al2O3 nanogranular films consist of the FeCoB nanoparticles uniformly embedded in the amorphous Al2O3 matrix. An addition of a small amount of B into the FeCo-Al2O3 films can markedly decrease the coercivity of the films. The excellent magnetic softness with a low coercivity of about 0.08?kA/m was achieved in the FeCoB-Al2O3 films. The Henkel plots confirm the existence of intergranular exchange coupling in the FeCoB-Al2O3 films. The FeCoB-Al2O3 films with low B content exhibit a high permeability over 200 at low frequency and a high-resonance frequency of 3.2?GHz, implying a high cut-off frequency for high frequency applications.  相似文献   

5.
Rahul Vaish 《哲学杂志》2013,93(19):1555-1564
Transparent glasses in the system 3BaO–3TiO2–B2O3 (BTBO) were fabricated via the conventional melt-quenching technique. The as-quenched samples were confirmed to be non-crystalline by differential thermal analysis (DTA). Thermal parameters were evaluated using non-isothermal DTA experiments. The Kauzmann temperature was found to be 759 K based on heating-rate-dependent glass transition and crystallization temperatures. A theoretical relation for the temperature-dependent viscosity is proposed for these glasses and glass-ceramics.  相似文献   

6.
A systematic series of (Ge20Se15Te65)1?x–(SnI2)x (x = 0, 0.05, 0.1, 0.15) chalcogenide glasses have been prepared. The amorphous nature can be confirmed by XRD and SEM. With the SnI2 content increasing, the indirect optical band gaps are decreased from 0.662 to 0.622 eV according to Tauc laws. The introduction of SnI2 makes the glasses much easier to prepare and more stable against crystallization, making them drawable as optical fibers. The highest ΔT (130 °C) value for (Ge20Se15Te65)0.9–(SnI2)0.1 glass composition can be obtained. A slight red-shifting of the long-wavelength cutting-off edge from 18.4 to 19.4 μm was shown and it seems that SnI2 in these glasses offers the improvement in the far-infrared properties.  相似文献   

7.
We have studied the electrical and optical properties of Cu–Al–O films deposited on silicon and quartz substrates by using radio frequency (RF) magnetron sputtering method under varied oxygen partial pressure PO. The results indicate that PO plays a critical role in the final phase constitution and microstructure of the films, and thus affects the electrical resistivity and optical transmittance significantly. The electrical resistivity increases with the increase of PO from 2.4 × 10?4 mbar to 7.5 × 10?4 mbar and afterwards it decreases with further increasing PO up to 1.7 × 10?3 mbar. The optical transmittance in visible region increases with the increase of PO and obtains the maximum of 65% when PO is 1.7 × 10?3 mbar. The corresponding direct band gap is 3.45 eV.  相似文献   

8.
9.
Yasser B. Saddeek 《哲学杂志》2013,93(26):2305-2320
Lead vanadate glasses of the system xMoO3–50V2O5–(50-x)PbO (0 ≤ x ≤ 25 mol. %) were synthesized and studied by FTIR and ultrasonic spectroscopy and differential scanning calorimetry to investigate the role of MoO3 content on their atomic structure. The elastic properties and Debye temperatures of the glasses were investigated using sound velocity measurements at 4 MHz. The activation energy for the glass transition was derived from the dependence of the glass-transition temperature (Tg ) on the heating rate. Similarly, the activation energy of the crystallization process was also determined. According to the IR analysis, the vibrations of the vanadate structural units are shifted towards higher wavenumbers on the formation of bridging oxygens. The change of density and molar volume with MoO3 content reveals that the molybdinate units are less dense than the lead oxide units. The observed compositional dependence of the elastic moduli is interpreted in terms of the effect of MoO3 on the coordination number of the vanadate units. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model. It is assumed that MoO3 plays the role of a glass former by increasing the activation energy for the glass transition and the activation energy for crystallization and by increasing both the thermal stability and the glass formation range of the vanadate glasses.  相似文献   

10.
Edge-cladding is a key factor in improving saturated small signal gain coefficientβ_S of large laser disc glass.In this paper,the glasses were melted with traditional method.The influences of mixed alkali effect (MAE)on refractive index,thermal expansion coefficientα,glass transition temperature T_g,dilatometer softening temperature T_d,and relative chemical durability of phosphate edge-cladding glasses were studied. The results reveal that when Li/(Na Li)=0.5,T_g,T_d,and dissolution rate(DR)reach a minimal value. These results are preferred in phosphate edge-cladding glasses.  相似文献   

11.
Binary semiconducting glasses of xV2O5·(1−x)B2O3 system with x ranging from 0.6 to 0.9 have been investigated to elucidate their electronic conduction. The values of conductivity and activation energy of these glasses are in good agreement with previous results on most V2O5-based glasses. Arguments for the small-polaron as the charge carrier in V2O5B2O3 glasses are presented.  相似文献   

12.
Four glasses in ZnO–SiO2–B2O3 ternary system were prepared by the melt quenching method with the objective of optimizing sub-nanosecond emission over the UV region of zinc borosilicate glasses used in superfast scintillators. The effect of vanadium addition and heat treatment on phase formation, microstructure and photoluminescence properties of the glasses was characterized by means of DTA, XRD, SEM and fluorescence spectrophotometer. Vanadium contributed to the near-band-edge emission in two ways, by introducing donor levels in the energy band of ZnO particles and by facilitating the precipitation of ZnO and willemite crystals. Furthermore, nucleation of willemite and zinc oxide phases, which are both the origins of the intense emission bands in the UV region, was facilitated with increasing either the time or temperature of heat treatments. Photoluminescence spectra showed the elimination of the visible emission band which is favorable in scintillating glasses.  相似文献   

13.
MgO-Li2O-Bi2O3-B2O3 glasses were prepared by melt quench technique and analyzed with the help of refractive index, optical, IR, and Raman spectroscopy studies. The present glasses exhibited the mixed modifier effect (MME) through refractive index change non-linearly. The variation in the indirect optical band gap and band tailing in MgO content have been discussed with the glass structure. Based on the obtained values of αo2-, optical basicity, and interaction parameters, the present glasses were termed as very semi covalent acidic oxide glasses. Raman and Infrared spectra reveal that these glasses are built up of BO3, BO4 units of B2O3 and octahedral [BiO6], pyramidal [BiO3] units of Bi2O3 were observed.  相似文献   

14.
The effect of copper alloying up to 25 at % on the structure–phase transformations and the physicomechanical properties of ternary alloys from the quasi-binary TiNi–TiCu section is studied by measuring the physicomechanical properties, transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction (XRD). The data of temperature measurements of the electrical resistivity and the magnetic susceptibility and XRD data are used to plot a general diagram for the thermoelastic B2 ? B19', B2 ? B19 ? B19', and B2 ? B19 martensitic transformations, which occur in the alloys upon cooling as the copper content increases in the ranges 0–8, 8–15, and 15–25 at % Cu, respectively. The experimental results are compared to the well-known data, including differential scanning calorimetry data, obtained for these alloys. The changes in the mechanical properties and the microstructure of the alloys in the state of B19 or B19' martensite are discussed.  相似文献   

15.
The glass formation in the SiO2-rich region of the ternary oxide system Al2O3–ZrO2–SiO2 with MgO, CaO, and TiO2 as melting aids was analyzed. The crystallization of glasses with different content of TiO2 and phase evolution with the temperature was studied by X-ray diffraction, infrared, laser Raman spectroscopy and transmission electron microscopy. The use of TiO2 favored formation and crystallization of the glasses due to the decrease of the viscosity of melts and acting as a nucleating agent. The crystalline phase of t-ZrO2 was developed at temperatures as low as 880°C whereas in as prepared specimens without TiO2 its presence was not detected. For the specimens with TiO2, t-ZrO2 and mullite were the principal phases at 1000°C. TiO2 addition did not change the crystallization sequence but decreased the formation temperature of the crystalline phases. Most of Ti4+ ions entered into t-ZrO2 and only a small portion in mullite, but the surplus was detected in ZrTiO4.  相似文献   

16.
Glasses xLi2O–(50-x)(MoO3)2–50P2O5 with x = 10, 20, 30, and 40 mol% were prepared and their optical and electrical properties were investigated. Analysis of the IR spectra revealed that the Li+ ions act as a glass modifier that enter the glass network by breaking up other linkages and creating non-bridging oxygens in the network. The optical absorption edge of the glasses was measured for specimens in the form of thin blown films and the optical absorption spectra of those were recorded in the range 200–800 nm. From the optical absorption edges studies, the optical band gap (E opt) and the Urbach energy (E e) values have been evaluated by following the available semi-empirical theories. The linear variation of (αhν)1/2 with , is taken as evidence of indirect interband transitions. The E opt values were found to decrease with increasing Li2O content by causing increase in the number of non-bridging oxygens in network. The Urbach tail analysis gives the width of localized states between 0.48 and 0.74 eV.  相似文献   

17.
PbO–Bi2O3–B2O3 glasses containing small concentrations of Fe2O3 (0–1 mol%) were subject to dielectric studies (dielectric constant ε′; loss tan δ; and ac conductivity σ ac) over a wide range of frequency and temperature. From spectroscopic (infrared, optical absorption and ESR spectra) and magnetic susceptibility studies, variations in these properties with dopant ion concentration were analyzed in terms of different oxidation states and iron ion environment in the glass network.  相似文献   

18.
Glasses having composition (B2O3)25 (PbO)70 (Al2O3)5 (Sm2O3)x ,where x=0, 0.5, 1, 2, 3 and 5 g were prepared using the normal melt quench technique. Spectral reflectance and transmittance at normal incidence of the glass samples are recorded with a spectrophotometer in the spectral range 220–2200 nm. These measured values are introduced into analytical expressions to calculate the real and imaginary parts of the refractive indices. Wemple–DiDomenico single oscillator model and one-term Sellmeier dispersion relations are used to model the real refractive indices. Dispersion parameters such as: single oscillator energy, dispersion energy, lattice oscillating strength, average oscillator wavelength, average oscillator strength and Abbe's number are deduced and compared. Absorption dispersion parameters such as: Fermi energy, optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter are calculated. Effects of doping Sm2O3 on these linear optical parameters are investigated and interpreted.  相似文献   

19.
Er3+ and Dy3+ codoped tellurite glasses have been synthesized. Five emission bands in the PL spectrum under 325 nm pumping were observed. Three of them correspond to Er3+ and the other two correspond to Dy3+, respectively. The PL spectrum revealed that the intensity of Dy3+ characteristic emission was enhanced as Er3+ concentration increased while keeping Dy3+ concentration constant. Due to small mismatch between the energy level of Er3+:4F7/2 and Dy3+:4F9/2 resonant energy was possibly transferred between them. This process can give rise to an enhancement of the PL intensity of 484 and 574 nm from Dy3+. The PL spectra of these glasses cover the blue, green and red wavelength range and the intensities of those emission bands could be controlled by adjusting the concentration of relevant rare-earth ions. These glasses with the controllable CIE coordinates might be a potential candidate for the widely realistic application such as solid-state white lighting and multicolor display.  相似文献   

20.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号