首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate a novel method of introducing point defects (mono- and divacancies) in a confined monolayer colloidal crystal by manipulating individual particles with optical tweezers. Digital video microscopy is used to study defect dynamics in real space and time. We verify the numerical predictions that the stable configurations of the defects have reduced symmetry compared to the triangular lattice and discover that in addition they are characterized by distinct topological arrangements of the particles in the defect core. Surprisingly, point defects are thermally excited into separated dislocations, from which we extract the dislocation pair potential.  相似文献   

2.
Arun Kumar 《哲学杂志》2013,93(23):2947-2956
Dislocations have been considered as mechanically unstable defects in bulk crystals, ignoring the Peierls oscillations. Eshelby [J. Appl. Phys. 24 (1953) p.176] had showed that a screw dislocation can be stable in a thin cylinder. In the current work, considering Eshelby's example of an edge dislocation in a single crystalline plate, we show that an edge dislocation can be stable in a finite crystal. Using specific examples, we also show that the position of stability of an edge dislocation can be off-centre. This shift in the stability from the centre marks the transition from a stable dislocation to an unstable one. The above-mentioned tasks are achieved by simulating edge dislocations using the finite element method.  相似文献   

3.
This study is aimed at developing a physics-based crystal plasticity finite element model for body-centred cubic (BCC) metals, through the introduction of atomic-level deformation information from molecular dynamics (MD) investigations of dislocation motion at the onset of plastic flow. In this study, three critical variables governing crystal plasticity mediated by dislocation motion are considered. MD simulations are first performed across a range of finite temperatures up to 600K to quantify the temperature dependence of critical stress required for slip initiation. An important feature of slip in BCC metals is that it is not solely dependent on the Schmid law measure of resolved shear stress, commonly employed in crystal plasticity models. The configuration of a screw dislocation and its subsequent motion is studied under different load orientations to quantify these non-Schmid effects. Finally, the influence of strain rates on thermal activation is studied by inducing higher stresses during activation at higher applied strain rates. Functional dependence of the critical resolved shear stress on temperature, loading orientation and strain rate is determined from the MD simulation results. The functional forms are derived from the thermal activation mechanisms that govern the plastic behaviour and quantification of relevant deformation variables. The resulting physics-based rate-dependent crystal plasticity model is implemented in a crystal plasticity finite element code. Uniaxial simulations reveal orientation-dependent tension–compression asymmetry of yield that more accurately represents single-crystal experimental results than standard models.  相似文献   

4.
Performance degradation of structural steels in nuclear environments results from the formation of a high number density of nanometre-scale defects. The defects observed in copper-based alloys are composed of vacancy clusters in the form of stacking fault tetrahedra and/or prismatic dislocation loops that impede the motion of dislocations. The mechanical behaviour of irradiated copper alloys exhibits increased yield strength, decreased total strain to failure and decreased work hardening as compared to their unirradiated behaviour. Above certain critical defect concentrations (neutron doses), the mechanical behaviour exhibits distinct upper yield points. In this paper, we describe the formulation of an internal state variable model for the mechanical behaviour of such materials subject to these (irradiation) environments. This model has been developed within a multiscale materials-modelling framework, in which molecular dynamics simulations of dislocation–radiation defect interactions inform the final coarse-grained continuum model. The plasticity model includes mechanisms for dislocation density growth and multiplication and for irradiation defect density evolution with dislocation interaction. The general behaviour of the constitutive (homogeneous material point) model shows that as the defect density increases, the initial yield point increases and the initial strain hardening decreases. The final coarse-grained model is implemented into a finite element framework and used to simulate the behaviour of tensile specimens with varying levels of irradiation-induced material damage. The simulation results compare favourably with the experimentally observed mechanical behaviour of irradiated materials.  相似文献   

5.
We propose a new type of birefringent index guiding photonic crystal fiber (PCF) with two hollow GeO2-doped silica ring defects imbedded in a hexagonal hole arrays. Rigorous finite element method (FEM) using the perfectly matched layer (PML) was applied to calculate complex propagation constant and analyze optical transmission characteristics. Birefringence was flexibly controlled independent of chromatic dispersion, and improvement in confinement loss was achieved by optimizing hollow ring defect parameters.  相似文献   

6.
二维正方晶格多点缺陷声子晶体实验研究   总被引:5,自引:0,他引:5       下载免费PDF全文
赵寰宇  何存富  吴斌  汪越胜 《物理学报》2013,62(13):134301-134301
基于超声浸水透射技术, 实验研究了有限尺寸二维正方晶格钢/水声子晶体多点缺陷模态性质. 利用COMSOL Multiphysics软件建立该声子晶体有限元计算方法, 求解了9×9超胞多点缺陷声子晶体能带结构, 把缺陷局域模态频率与数值仿真和实验结果进行对比, 结果表明: 实验数据和理论值能够很好符合. 进一步分析发现, 点缺陷数量影响声波局域效应、本征模态和传播特性, 为设计有限尺寸声波器件提供理论依据. 关键词: 声子晶体 多点缺陷 实验研究 有限元  相似文献   

7.
固/固型二维正方晶格声子晶体缺陷态研究*   总被引:1,自引:0,他引:1  
固/固型声子晶体在抑制噪音和隔离振动等工程领域有着潜在的应用。利用有限元方法对存在缺陷的二维正方晶格金/环氧树脂声子晶体进行了研究,数值计算结果表明弹性波在点缺陷处局域,带隙中出现多条缺陷模,点缺陷数目的增加对声子晶体局域特性产生显著影响;弹性波沿着线缺陷传播形成波导,改变线缺陷结构可以改变弹性波传播方向和实现信号的分离。对声子晶体缺陷特性的研究可为声学滤波器和波导等器件的设计提供参考。  相似文献   

8.
离散元与有限元结合的多尺度方法及其应用   总被引:11,自引:0,他引:11  
胥建龙  唐志平 《计算物理》2003,20(6):477-482
在深入研究复杂结构和非均质材料冲击响应和破坏机理的过程中,往往遇到多尺度计算问题.提出并建立起离散元与有限元结合的多尺度方法,该方法采用离散元对感兴趣的局部进行细观尺度的模拟,利用有限元进行宏观的模拟,从而节约了计算时间.采用一种特殊的过渡层衔接离散元区和有限元区.将这一方法应用于激光辐照下预应力铝板的破坏响应,并将得到的模拟结果与实验进行了比较.  相似文献   

9.
Abstract

The processes of radiation damage, from initial defect production to microstructure evolution, occur over a wide spectrum of time and size scales. An understanding of the fundamental aspects of these processes requires a spectrum of theoretical models, each applicable in its own time and distance scales. As elements of this multi-model approach, molecular dynamics and binary collision simulations play complementary roles in the characterization of the primary damage state of high energy collision cascades. Molecular dynamics is needed to describe the individual point defects in the primary damage state with the requisite physical reality. The binary collision approximation is needed to model the gross structure of statistically significant numbers of high energy cascades. Information provided by both models is needed for connecting the defect production in the primary damage state with the appropriate models of defect diffusion and interaction describing the microstructure evolution. Results of binary collision simulations of high energy cascade morphology are reviewed. The energy dependence of freely migrating defect fractions calculated in recent molecular dynamics simulations are compared to results obtained much earlier with a binary collision/annealing simulation approach. The favorable agreement demonstrates the viability of the multi-model approach to defect production in high energy cascades.  相似文献   

10.
We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential.  相似文献   

11.
Three dimensional kinetic Monte Carlo simulations on super-lattices are applied to study the evolution of stacking faults during epitaxial growths. We show that, in the case of misoriented close packed substrates, these defects can either extend throughout the entire epilayer (i.e. extended from the substrate up to the surface) or close in dislocation loops, in dependence of the deposition conditions. We explain this behavior in terms of a surface kinetic competition between these defects and the surrounding crystal: if the local growth rate of the defect is larger compared with that of the perfect crystal the defect will expands, otherwise it will closes. This mechanisms allows to explain several experimental results on homo and hetero epitaxies.  相似文献   

12.
We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal.  相似文献   

13.
陈军  徐云  陈栋泉  孙锦山 《物理学报》2008,57(10):6437-6443
本文利用多尺度方法研究了包含孔洞金属材料在冲击加载条件下的动力学行为. 该多尺度方法结合了分子动力学和有限元方法,分子动力学方法运用于局部缺陷区域,而有限元方法运用于整个模型区域,两种方法之间使用桥尺度函数进行连接. 计算结果既包括了系统宏观的物理信息,如应变场、应力场、温度场等,也得到了微观原子的物理信息,如原子能量和位置坐标等. 结合以上的模拟结果,发现孔洞的坍塌与材料屈服强度和冲击强度有关,而孔洞坍塌和坍塌过程中对微喷射原子的压缩过程是形成局部热点的主要原因. 同时也发现孔洞坍塌形成的位错和局部热点可以导致局部绝热剪切带更容易形成. 关键词: 微孔洞 热点 冲击加载 多尺度方法  相似文献   

14.
 阐述了一种离散元与有限元法相结合的计算方法,编制了可应用于细观模拟的二维程序,对受冲击载荷作用的均匀材料和非均匀材料的响应特征进行了计算,并对数值模拟进行了验证。计算结果与理论值较吻合,验证了方法的可行性。  相似文献   

15.
ABSTRACT

The ability to experimentally synthesise ceramic materials to incorporate nanotwinned microstructures can drastically affect the underlying deformation mechanisms and mechanics through the complex interaction between stress state, crystallographic orientation, and twin orientation. In this study, molecular dynamics simulations are used to examine the transition in deformation mechanisms and mechanical responses of nanotwinned zinc-blende SiC ceramics subjected to different stress states (uniaxial compressive, uniaxial tensile, and shear deformation) by employing various twin spacings and loading/crystallographic orientations in nanotwinned structures, as compared to their single crystal counterparts. The simulation results show that different combinations of stress states and crystal/twin orientation, and twin spacing trigger different deformation mechanisms: (i) shear localised deformation and shear-induced fracture, preceded by point defect formation and dislocation slip, in the vicinity of the twin lamellae, shear band formation, and dislocation (emission) avalanche; (ii) cleavage and fracture without dislocation plasticity, weakening the nanotwinned ceramics compared to their twin-free counterpart; (iii) severe localised deformation, generating a unique zigzag microstructure between twins without any structural phase transformations or amorphisation, and (iv) atomic disordering localised in the vicinity of coherent twin boundaries, triggering dislocation nucleation and low shearability compared to twin-free systems.  相似文献   

16.
构造Lagrange坐标系下二维可压缩气动方程组的RKDG(Runge-Kutta Discontinuous Galerkin)有限元方法.将流体力学方程组和几何守恒律统-求解,所有计算都在固定的网格上进行,计算过程中不需要网格节点的速度信息.对几个数值算例进行数值模拟,得到较好的数值模拟结果.  相似文献   

17.
二维声子晶体同质位错结缺陷态特性   总被引:5,自引:0,他引:5       下载免费PDF全文
赵芳  苑立波 《物理学报》2006,55(2):517-520
利用平面波展开法结合超原胞的方法研究了二维声子晶体同质位错结的缺陷态.分别研究了横向位错和纵向位错两种情况,研究结果表明:横向位错效应与线缺陷相似,它可以使处于禁带频率范围内的声波沿位错通道进行传播,形成声波导;纵向位错效应则类似于点缺陷,位错线两边三个最接近的散射子形成腔,因而能够产生局域模.另外,横向位错距离和纵向位错距离的大小将影响缺陷带的位置和数量,因此,可以通过调节横向位错距离或纵向位错距离来人为的控制同质位错结中的缺陷带. 关键词: 声子晶体 同质位错结 缺陷态  相似文献   

18.
Acoustic wave propagation in a woodpile sonic crystal with a defect is studied theoretically and experimentally. The woodpile sonic crystal is composed of polymethyl methacrylate square rods which orthogonally stacked together, and it is embedded in air background. Defects are created by varying the width and positions of the middle rods in the periodic structure. Defect bands and transmission spectra are calculated by using the finite element method with the periodic boundary condition and the Bloch–Floquet theorem. Frequencies of defect bands are strongly dependent on the width and positions of the middle rods in the periodic structure. The experimental transmission spectra of the woodpile sonic crystals with a defect are also presented and compared with the numerical results. The defect mode properties of the woodpile sonic crystal with a defect can be applied to design novel acoustic devices for filtering sound and trapping sound in defects.  相似文献   

19.
In this study, we calculate the interaction energy of intrinsic point defects vacancies and interstitials) with screw dislocations in body-centered cubic iron. First (we calculate the dipole tensor of a defect in the bulk crystal using molecular statics. Using a formulation based on linear elasticity theory, we calculate the interaction energy of the defect and the dislocation using both isotropic and anisotropic strain fields. Second, we perform atomistic calculations using molecular statics methods to directly calculate the interaction energy. Results from these two methods are compared. We verify that continuum methods alone are unable to correctly predict the interactions of defects and dislocations near the core. Although anisotropic theory agrees qualitatively with atomistics far from the core, it cannot predict which dumbbell orientations are stable and any continuum calculations must be used with caution. Spontaneous absorption by the core of both vacancies and dumbbells is seen. This paper demonstrates and discusses the differences between continuum and atomistic calculations of interaction energy between a dislocation core and a point defect.  相似文献   

20.
卢果  方步青  张广财  许爱国 《物理学报》2009,58(11):7934-7946
在FCC单晶铜中构造了滑移面为(111),伯格矢量为b=[112]/6的圆形不完全位错环.采用分子动力学方法模拟了该位错环在0—350 K温度区间内的自收缩过程.模拟结果发现:零温度下,位错不能跨越Peierls-Nabarro势垒运动,迁移速度为0;50 K温度下,螺型和刃型位错具有基本相同的迁移速度;随温度增加,刃型位错具有较大迁移速度;温度较高时,位错核宽度进一步增加;小位错环周围的局部应力,引起4个脱体位错环;脱体位错环在原位错的应力作用下逐渐生长,原位错消失后,在自相 关键词: 单晶铜 位错环 分子动力学 位错源  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号